MySQL 分表优化试验代码_MySQL

Jun 01, 2016 pm 01:20 PM

bitsCN.com 这里的分表逻辑是根据t_group表的user_name组的个数来分的。
因为这种情况单独user_name字段上的索引就属于烂索引。起不了啥名明显的效果。

1、试验PROCEDURE.
DELIMITER $$
DROP PROCEDURE `t_girl`.`sp_split_table`$$
CREATE  PROCEDURE `t_girl`.`sp_split_table`()
BEGIN
  declare done int default 0;
  declare v_user_name varchar(20) default '';
  declare v_table_name varchar(64) default '';
  -- Get all users' name.
  declare cur1 cursor for select user_name from t_group group by user_name;
  -- Deal with error or warnings.
  declare continue handler for 1329 set done = 1;
  -- Open cursor.
  open cur1;
  while done 1
  do
    fetch cur1 into v_user_name;
    if not done then
      -- Get table name.
      set v_table_name = concat('t_group_',v_user_name);
      -- Create new extra table.
      set @stmt = concat('create table ',v_table_name,' like t_group');
      prepare s1 from @stmt;
      execute s1;
      drop prepare s1;
      -- Load data into it.
      set @stmt = concat('insert into ',v_table_name,' select * from t_group where user_name = ''',v_user_name,'''');
      prepare s1 from @stmt;
      execute s1;
      drop prepare s1;
    end if;
  end while;
  -- Close cursor.
  close cur1;
  -- Free variable from memory.
  set @stmt = NULL;
END$$

DELIMITER ;
2、试验表。
我们用一个有一千万条记录的表来做测试。


mysql> select count(*) from t_group;
+----------+
| count(*) |
+----------+
| 10388608 |
+----------+
1 row in set (0.00 sec)

表结构。
mysql> desc t_group;
+-------------+------------------+------+-----+-------------------+----------------+
| Field       | Type             | Null | Key | Default           | Extra          |
+-------------+------------------+------+-----+-------------------+----------------+
| id          | int(10) unsigned | NO   | PRI | NULL              | auto_increment |
| money       | decimal(10,2)    | NO   |     |                   |                |
| user_name   | varchar(20)      | NO   | MUL |                   |                |
| create_time | timestamp        | NO   |     | CURRENT_TIMESTAMP |                |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)

索引情况。

mysql> show index from t_group;
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| Table   | Non_unique | Key_name         | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| t_group |          0 | PRIMARY          |            1 | id          | A         |    10388608 |     NULL | NULL   |      | BTREE      |         |
| t_group |          1 | idx_user_name    |            1 | user_name   | A         |           8 |     NULL | NULL   |      | BTREE      |         |
| t_group |          1 | idx_combination1 |            1 | user_name   | A         |           8 |     NULL | NULL   |      | BTREE      |         |
| t_group |          1 | idx_combination1 |            2 | money       | A         |        3776 |     NULL | NULL   |      | BTREE      |         |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
4 rows in set (0.00 sec)

PS:
idx_combination1 这个索引是必须的,因为要对user_name来GROUP BY。此时属于松散索引扫描!当然完了后你可以干掉她。
idx_user_name 这个索引是为了加快单独执行constant这种类型的查询。
我们要根据用户名来分表。


mysql> select user_name from t_group where 1 group by user_name;
+-----------+
| user_name |
+-----------+
| david     |
| leo       |
| livia     |
| lucy      |
| sarah     |
| simon     |
| sony      |
| sunny     |
+-----------+
8 rows in set (0.00 sec)

所以结果表应该是这样的。
mysql> show tables like 't_group_%';
+------------------------------+
| Tables_in_t_girl (t_group_%) |
+------------------------------+
| t_group_david                |
| t_group_leo                  |
| t_group_livia                |
| t_group_lucy                 |
| t_group_sarah                |
| t_group_simon                |
| t_group_sony                 |
| t_group_sunny                |
+------------------------------+
8 rows in set (0.00 sec)

3、对比结果。


mysql> select count(*) from t_group where user_name = 'david';
+----------+
| count(*) |
+----------+
|  1298576 |
+----------+
1 row in set (1.71 sec)

执行了将近2秒。

mysql> select count(*) from t_group_david;
+----------+
| count(*) |
+----------+
|  1298576 |
+----------+
1 row in set (0.00 sec)
几乎是瞬间的。

mysql> select count(*) from t_group where user_name 'david';
+----------+
| count(*) |
+----------+
|  9090032 |
+----------+
1 row in set (9.26 sec)
执行了将近10秒,可以想象,这个是实际的项目中是不能忍受的。
mysql> select (select count(*) from t_group) - (select count(*) from t_group_david) as total;
+---------+
| total   |
+---------+
| 9090032 |
+---------+
1 row in set (0.00 sec)
几乎是瞬间的。


我们来看看聚集函数。
对于原表的操作。

mysql> select min(money),max(money) from t_group where user_name = 'david';
+------------+------------+
| min(money) | max(money) |
+------------+------------+
|      -6.41 |     500.59 |
+------------+------------+
1 row in set (0.00 sec)
最小,最大值都是FULL INDEX SCAN。所以是瞬间的。
mysql> select sum(money),avg(money) from t_group where user_name = 'david';
+--------------+------------+
| sum(money)   | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (2.15 sec)
其他聚集函数的结果就不是FULL INDEX SCAN了。耗时2.15秒。

对于小表的操作。
mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
|      -6.41 |     500.59 |
+------------+------------+
1 row in set (1.50 sec)
最大最小值完全是FULL TABLE SCAN,耗时1.50秒,不划算。以此看来。
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money)   | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (1.68 sec)

取得这两个结果也是花了快2秒,快了一点。

我们来看看这个小表的结构。
mysql> desc t_group_david;
+-------------+------------------+------+-----+-------------------+----------------+
| Field       | Type             | Null | Key | Default           | Extra          |
+-------------+------------------+------+-----+-------------------+----------------+
| id          | int(10) unsigned | NO   | PRI | NULL              | auto_increment |
| money       | decimal(10,2)    | NO   |     |                   |                |
| user_name   | varchar(20)      | NO   | MUL |                   |                |
| create_time | timestamp        | NO   |     | CURRENT_TIMESTAMP |                |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)

明显的user_name属性是多余的。那么就干掉它。
mysql> alter table t_group_david drop user_name;
Query OK, 1298576 rows affected (7.58 sec)
Records: 1298576  Duplicates: 0  Warnings: 0

现在来重新对小表运行查询

mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
|      -6.41 |     500.59 |
+------------+------------+
1 row in set (0.00 sec)

此时是瞬间的。
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money)   | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (0.94 sec)

这次算是控制在一秒以内了。

mysql> Aborted

小总结一下:分出的小表的属性尽量越少越好。大胆的去干吧。bitsCN.com

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

MySQLでインデックスを使用するよりも、フルテーブルスキャンがいつ速くなるのでしょうか? MySQLでインデックスを使用するよりも、フルテーブルスキャンがいつ速くなるのでしょうか? Apr 09, 2025 am 12:05 AM

完全なテーブルスキャンは、MySQLでインデックスを使用するよりも速い場合があります。特定のケースには以下が含まれます。1)データボリュームは小さい。 2)クエリが大量のデータを返すとき。 3)インデックス列が高度に選択的でない場合。 4)複雑なクエリの場合。クエリプランを分析し、インデックスを最適化し、オーバーインデックスを回避し、テーブルを定期的にメンテナンスすることにより、実際のアプリケーションで最良の選択をすることができます。

INNODBフルテキスト検索機能を説明します。 INNODBフルテキスト検索機能を説明します。 Apr 02, 2025 pm 06:09 PM

INNODBのフルテキスト検索機能は非常に強力であり、データベースクエリの効率と大量のテキストデータを処理する能力を大幅に改善できます。 1)INNODBは、倒立インデックスを介してフルテキスト検索を実装し、基本的および高度な検索クエリをサポートします。 2)一致を使用してキーワードを使用して、ブールモードとフレーズ検索を検索、サポートします。 3)最適化方法には、単語セグメンテーションテクノロジーの使用、インデックスの定期的な再構築、およびパフォーマンスと精度を改善するためのキャッシュサイズの調整が含まれます。

Windows 7にMySQLをインストールできますか? Windows 7にMySQLをインストールできますか? Apr 08, 2025 pm 03:21 PM

はい、MySQLはWindows 7にインストールできます。MicrosoftはWindows 7のサポートを停止しましたが、MySQLは引き続き互換性があります。ただし、インストールプロセス中に次のポイントに注意する必要があります。WindowsのMySQLインストーラーをダウンロードしてください。 MySQL(コミュニティまたはエンタープライズ)の適切なバージョンを選択します。インストールプロセス中に適切なインストールディレクトリと文字セットを選択します。ルートユーザーパスワードを設定し、適切に保ちます。テストのためにデータベースに接続します。 Windows 7の互換性とセキュリティの問題に注意してください。サポートされているオペレーティングシステムにアップグレードすることをお勧めします。

MySQL:簡単な学習のためのシンプルな概念 MySQL:簡単な学習のためのシンプルな概念 Apr 10, 2025 am 09:29 AM

MySQLは、オープンソースのリレーショナルデータベース管理システムです。 1)データベースとテーブルの作成:createdatabaseおよびcreateTableコマンドを使用します。 2)基本操作:挿入、更新、削除、選択。 3)高度な操作:参加、サブクエリ、トランザクション処理。 4)デバッグスキル:構文、データ型、およびアクセス許可を確認します。 5)最適化の提案:インデックスを使用し、選択*を避け、トランザクションを使用します。

INNODBのクラスターインデックスと非クラスターインデックス(セカンダリインデックス)の違い。 INNODBのクラスターインデックスと非クラスターインデックス(セカンダリインデックス)の違い。 Apr 02, 2025 pm 06:25 PM

クラスター化されたインデックスと非クラスター化されたインデックスの違いは次のとおりです。1。クラスター化されたインデックスは、インデックス構造にデータを保存します。これは、プライマリキーと範囲でクエリするのに適しています。 2.非クラスター化されたインデックスストアは、インデックスキー値とデータの行へのポインターであり、非プリマリーキー列クエリに適しています。

MySQLユーザーとデータベースの関係 MySQLユーザーとデータベースの関係 Apr 08, 2025 pm 07:15 PM

MySQLデータベースでは、ユーザーとデータベースの関係は、アクセス許可と表によって定義されます。ユーザーには、データベースにアクセスするためのユーザー名とパスワードがあります。許可は助成金コマンドを通じて付与され、テーブルはCreate Tableコマンドによって作成されます。ユーザーとデータベースの関係を確立するには、データベースを作成し、ユーザーを作成してから許可を付与する必要があります。

さまざまなタイプのMySQLインデックス(Bツリー、ハッシュ、フルテキスト、空間)を説明します。 さまざまなタイプのMySQLインデックス(Bツリー、ハッシュ、フルテキスト、空間)を説明します。 Apr 02, 2025 pm 07:05 PM

MySQLは、Bツリー、ハッシュ、フルテキスト、および空間の4つのインデックスタイプをサポートしています。 1.B-Treeインデックスは、等しい値検索、範囲クエリ、ソートに適しています。 2。ハッシュインデックスは、等しい値検索に適していますが、範囲のクエリとソートをサポートしていません。 3.フルテキストインデックスは、フルテキスト検索に使用され、大量のテキストデータの処理に適しています。 4.空間インデックスは、地理空間データクエリに使用され、GISアプリケーションに適しています。

mysqlとmariadbは共存できますか mysqlとmariadbは共存できますか Apr 08, 2025 pm 02:27 PM

MySQLとMariaDBは共存できますが、注意して構成する必要があります。重要なのは、さまざまなポート番号とデータディレクトリを各データベースに割り当て、メモリ割り当てやキャッシュサイズなどのパラメーターを調整することです。接続プーリング、アプリケーションの構成、およびバージョンの違いも考慮する必要があり、落とし穴を避けるために慎重にテストして計画する必要があります。 2つのデータベースを同時に実行すると、リソースが制限されている状況でパフォーマンスの問題を引き起こす可能性があります。

See all articles