アテンションフリーの大型モデル Eagle7B: RWKV に基づいて、推論コストが 10 ~ 100 分の 1 に削減
アテンションフリーな大型モデル Eagle7B: RWKV をベースに推論コストを 10 ~ 100 分の 1 に削減
AI トラックでは、最近小型モデルが大きな注目を集めています。数千億のパラメータを持つモデルと比較すると、Model.たとえば、フランスの AI スタートアップ企業がリリースした Mistral-7B モデルは、すべてのベンチマークで Llama 2 を 13B 上回り、コード、数学、推論では Llama 1 を 34B 上回りました。
大規模モデルと比較して、小規模モデルには、低いコンピューティング能力要件やデバイス側で実行できる機能など、多くの利点があります。
#最近、オープン ソースの非営利団体 RWKV から、7.52B パラメーター Eagle 7B という新しい言語モデルが登場しました。これには次の特徴があります。
- 推論コストが低い RWKV-v5 アーキテクチャに基づいて構築されています (RWKV は線形変換器であり、推論が削減されます)コストは 10 ~ 100 倍);
- は 100 を超える言語と 1 兆 1,000 億のトークンでトレーニングされています;
- は複数の言語でトレーニングされています-言語ベンチマーク テストでは、すべての 7B クラス モデルより優れています;
- 英語評価では、Eagle 7B のパフォーマンスは Falcon (1.5T)、LLaMA2 (2T) に近い)、ミストラル;
- 英語レビューでMPT-7B (1T)と比較;
- 注意なしのトランス。
現在、RWKV は第 6 世代 RWKV-6 まで反復されており、Transformer と同様のパフォーマンスとサイズを備えています。将来の研究者は、このアーキテクチャを使用して、より効率的なモデルを作成できます。
RWKV の詳細については、「Transformer 時代の RNN の再構築、RWKV は非 Transformer アーキテクチャを数百億のパラメータに拡張する」を参照してください。
RWKV-v5 Eagle 7B は、制限なく個人用または商用目的で使用できることは言及する価値があります。
23 言語でのテスト結果
複数言語でのさまざまなモデルのパフォーマンスは次のとおりです。ベンチマークには、xLAMBDA、xStoryCloze、xWinograd、xCopa が含まれます。
合計 23 言語
これらのベンチマークには、ほとんど常識的な推論が組み込まれており、v4 から v5 への RWKV アーキテクチャの多言語パフォーマンスの大幅な飛躍が示されています。ただし、多言語ベンチマークがないため、この研究では一般的に使用される 23 言語での能力しかテストできず、残りの 75 以上の言語での能力はまだ不明です。
英語でのパフォーマンス
英語でのさまざまなモデルのパフォーマンスは、常識的な推論を含む 12 のベンチマークを通じて判断されます。そして世界の知識。
結果から、RWKV の v4 アーキテクチャから v5 アーキテクチャへの大きな飛躍が再びわかります。 v4 は以前は 1T トークン MPT-7b に負けていましたが、v5 はベンチマーク テストで追いつき始めており、場合によっては (LAMBADA、StoryCloze16、WinoGrande、HeadQA_en、Sciq の一部のベンチマーク テストでも) Falcon や llama2 を超えることもあります。
さらに、v5 のパフォーマンスは、おおよそのトークン トレーニング統計を考慮すると、予想される Transformer のパフォーマンス レベルと一致し始めます。
以前、ミストラル 7B は 7B スケール モデルでのリードを維持するために 2 ~ 7 兆トークンのトレーニング方法を使用していました。この研究では、このギャップを埋めて、RWKV-v5 Eagle 7B が llama2 のパフォーマンスを上回り、ミストラルのレベルに達することを期待しています。
次の図は、3,000 億トークン ポイント付近の RWKV-v5 Eagle 7B のチェックポイントが pythia-6.9b と同様のパフォーマンスを示していることを示しています。
##これは、RWKV-v4 アーキテクチャに関する以前の実験 (パイルベース) と一致しており、RWKV のような線形トランスフォーマーはパフォーマンス レベルがトランスフォーマーと同様であり、同じ数のトークンを持っています。# 予想どおり、このモデルの登場は、(評価ベンチマークの観点から)これまでで最も強力なリニアトランスの登場を示しています。
以上がアテンションフリーの大型モデル Eagle7B: RWKV に基づいて、推論コストが 10 ~ 100 分の 1 に削減の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック

0.この記事は何をするのですか?私たちは、多用途かつ高速な最先端の生成単眼深度推定モデルである DepthFM を提案します。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。この作品について一緒に読みましょう〜 1. 論文情報タイトル: DepthFM: FastMonocularDepthEstimationwithFlowMatching 著者: MingGui、JohannesS.Fischer、UlrichPrestel、PingchuanMa、Dmytr

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

最近、軍事界は、米軍戦闘機が AI を使用して完全自動空戦を完了できるようになったというニュースに圧倒されました。そう、つい最近、米軍のAI戦闘機が初めて公開され、その謎が明らかになりました。この戦闘機の正式名称は可変安定性飛行シミュレーター試験機(VISTA)で、アメリカ空軍長官が自ら飛行させ、一対一の空戦をシミュレートした。 5 月 2 日、フランク ケンダル米国空軍長官は X-62AVISTA でエドワーズ空軍基地を離陸しました。1 時間の飛行中、すべての飛行動作が AI によって自律的に完了されたことに注目してください。ケンダル氏は「過去数十年にわたり、私たちは自律型空対空戦闘の無限の可能性について考えてきたが、それは常に手の届かないものだと思われてきた」と語った。しかし今では、
