目次
従来のモデル中心の AI 手法は、機械学習開発の主な方法です。その中心的なアイデアは、継続的な反復を通じてモデルのパフォーマンスを向上させ、特定のデータセットを処理する最適なモデルを生成することです。研究者やエンジニアは、モデルのパラメーター、レイヤー数、その他のアーキテクチャ要素の微調整に多くの時間を費やしています。しかし、これまでモデルの構築と微調整は複雑でリソースを大量に消費するプロセスであり、有意義な結果を生み出すためには深い専門知識が必要だったため、データは二次的な要素として扱われることがよくありました。しかし、近年、機械学習技術の進歩や計算能力の向上に伴い、データの重要性が徐々に重要視されるようになってきています。最新の AI 手法は、データの品質と多様性にさらに注意を払い、より大規模なデータセットとより強力なコンピューティング能力を通じてモデルをトレーニングすることで、モデルのパフォーマンスと汎化能力を向上させています。このデータ中心のアプローチは、機械学習の分野における現在の主流の傾向となっています。
データ中心のアプローチにより、データが現実世界のシナリオを表すようにクリーニング、強化、保証するなど、モデル トレーニング用のデータの品質が向上します。
データの品質と関連性を確保する AI へのデータ中心のアプローチに移行することで、組織は次の利点を得ることができます。
データ中心のアプローチの典型的な利点の 1 つは、現実世界のシナリオと緊密に統合されたエクスペリエンスを提供できることです。モデルが低品質データの誤りに苦戦することが多いモデル中心のアプローチとは異なり、データ中心の人工知能 (AI) は、AI モデルと、AI モデルがナビゲートしようとしている動的な現実との間のギャップを埋めることを目指しています。
幻想の影を軽減する
予測および生成 AI の可能性を最大限に引き出す
データで AI 進化の未来をリードする
両方の長所を融合する
ホームページ テクノロジー周辺機器 AI 人工知能のパラダイムはモデル中心からデータ中心に移行

人工知能のパラダイムはモデル中心からデータ中心に移行

Feb 01, 2024 pm 11:18 PM
AI データ モデル

人工知能のパラダイムはモデル中心からデータ中心に移行

データ指向の人工知能は、生成 AI システムにおける錯覚や偏見を軽減し、その結果、出力の品質を向上させることができます。

『モデル中心からデータ中心の AI へのパラダイム シフト』を翻訳した著者ラーフル プラダンは 16 年以上の経験があり、現在は Couchbase の製品および戦略担当副社長を務めています。 。

トランスフォーマー ニューラル ネットワークや敵対的生成ネットワーク (GAN) などの人工知能 (AI) の進歩により、テクノロジー分野は大きな変革を迎えています。これらのテクノロジーは大きな可能性を秘めているだけでなく、大規模なイノベーションと創造性を解き放つこともできます。より正確で効率的なソリューションを提供し、さまざまな業界に新しいビジネスと開発の機会をもたらすことができます。トランスフォーマー ニューラル ネットワークと GAN を組み合わせることで、AI システムが人間の言語、画像、音声をよりよく理解して生成できるようになり、自然言語処理、コンピューター ビジョン、音声認識などの分野の開発が促進されます。これらのテクノロジーがますます成熟するにつれて、より革新的なアプリケーションやブレークスルーが出現し、人間社会により多くのものをもたらすことが期待できます。AI の発展に伴い、データが重要になります。データは機械学習プロジェクトを推進する生命線であり、概念を実用的な洞察に変えます。しかし、AI プロジェクトでデータを効果的に活用するには課題が多く、その導入と変革的価値の実現が妨げられています。

AI の開発を強化するために、私たちは現在、モデル中心からデータ中心の AI 変革へのパラダイム シフトを経験しています。この移行の目的は、敵対的生成ネットワーク システムで生じる幻覚と偏見を軽減することです。データ中心の AI に焦点を当て、モデルをデータに近づけることで、AI モデルの出力を向上させ、企業がその可能性を最大限に発揮できるように支援します。この変化はAIの開発に重要な推進力をもたらすでしょう。

モデル中心の AI 手法

従来のモデル中心の AI 手法は、機械学習開発の主な方法です。その中心的なアイデアは、継続的な反復を通じてモデルのパフォーマンスを向上させ、特定のデータセットを処理する最適なモデルを生成することです。研究者やエンジニアは、モデルのパラメーター、レイヤー数、その他のアーキテクチャ要素の微調整に多くの時間を費やしています。しかし、これまでモデルの構築と微調整は複雑でリソースを大量に消費するプロセスであり、有意義な結果を生み出すためには深い専門知識が必要だったため、データは二次的な要素として扱われることがよくありました。しかし、近年、機械学習技術の進歩や計算能力の向上に伴い、データの重要性が徐々に重要視されるようになってきています。最新の AI 手法は、データの品質と多様性にさらに注意を払い、より大規模なデータセットとより強力なコンピューティング能力を通じてモデルをトレーニングすることで、モデルのパフォーマンスと汎化能力を向上させています。このデータ中心のアプローチは、機械学習の分野における現在の主流の傾向となっています。

データ中心の AI への変換

データ中心のアプローチにより、データが現実世界のシナリオを表すようにクリーニング、強化、保証するなど、モデル トレーニング用のデータの品質が向上します。

人工知能 (AI) モデルが成熟し、複雑さが増すにつれて、組織はデータ品質の向上と、モデルとデータ間の緊密な連携の構築に注力する必要があります。この進化する分野では、データをモデルに転送するのではなく、モデルをデータに近づけるという、必要かつ明確な変化を起こすことが重要です。これにより、モデル出力の品質が向上し、AI システムを悩ませることが多い錯覚が軽減されます。 AI に対するデータ中心のアプローチは、最新のデータに基づいて生成的かつ予測的なエクスペリエンスを提供したい組織にとっての基礎です。

データ中心の AI が将来の開発の方向性ですが、一部のシナリオではモデル中心の AI が依然として重要な役割を果たします。モデル中心の AI は、データが限られている場合、またはモデルの複雑さとパフォーマンスの限界を調査することが目標である場合に特に重要です。これは AI 研究の最前線を推進し、高品質のデータの入手が難しい問題を解決する可能性を提供します。したがって、モデル中心 AI は、データ駆動型 AI を補完するだけでなく、AI 分野において不可欠なアプローチです。

データ中心の考え方による AI の再考

データの品質と関連性を確保する AI へのデータ中心のアプローチに移行することで、組織は次の利点を得ることができます。

ブリッジングデータ品質の向上による現実性の向上

データ中心のアプローチの典型的な利点の 1 つは、現実世界のシナリオと緊密に統合されたエクスペリエンスを提供できることです。モデルが低品質データの誤りに苦戦することが多いモデル中心のアプローチとは異なり、データ中心の人工知能 (AI) は、AI モデルと、AI モデルがナビゲートしようとしている動的な現実との間のギャップを埋めることを目指しています。

幻想の影を軽減する

AI の幻覚は主に欠陥のあるデータによって引き起こされ、不正確または架空の情報が生成されることが特徴です。データ中心のアプローチに移行すると、これらのエラーを削減できる可能性が高まります。よりクリーンでより代表的なデータセットでモデルをトレーニングすると、より正確で信頼性の高い出力が生成されます。

予測および生成 AI の可能性を最大限に引き出す

高品質のデータの強固な基盤により、組織は AI の予測および生成機能を最大限に活用できます。この変化により、AI は既存のデータ パターンをより解釈できるようになり、同時に新しい洞察とエクスペリエンスを生成し、イノベーションの文化と情報に基づいた意思決定を促進します。

データで AI 進化の未来をリードする

モデル中心の人工知能 (AI) 手法からデータ中心の人工知能 (AI) 手法への転換は、考え方の基本的な変化を表しています。これにより、データが AI 変革の中心に据えられます。この移行は単なる技術的な調整ではなく、データを AI の中心に据える概念的な再調整です。組織がこの道に乗り出す際には、堅牢なデータ インフラストラクチャを育成し、データ リテラシーを開発し、AI の約束の基礎としてデータを評価する文化を構築する必要があります。

両方の長所を融合する

強力な AI ソリューションを構築するには、いつデータを重視し、モデルのイノベーションに重点を置くべきかを微妙に理解する必要があります。モデル中心の AI とデータ中心の AI の利点のバランスをとることは、今日の AI の課題を解決し、組織が AI プロジェクトから最大限の価値を得ることができるようにするために重要です。 AI モデルが最新のデータに基づいて開発され、正確で信頼できるものであることを保証するには、組織はデータ中心の AI への変革を受け入れる必要があります。

以上が人工知能のパラダイムはモデル中心からデータ中心に移行の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Jun 28, 2024 am 03:51 AM

このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Jun 10, 2024 am 11:08 AM

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります 微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります Jun 11, 2024 pm 03:57 PM

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

OpenAI データは必要ありません。大規模なコード モデルのリストに加わりましょう。 UIUC が StarCoder-15B-Instruct をリリース OpenAI データは必要ありません。大規模なコード モデルのリストに加わりましょう。 UIUC が StarCoder-15B-Instruct をリリース Jun 13, 2024 pm 01:59 PM

ソフトウェア テクノロジの最前線に立つ UIUC Zhang Lingming のグループは、BigCode 組織の研究者とともに、最近 StarCoder2-15B-Instruct 大規模コード モデルを発表しました。この革新的な成果により、コード生成タスクにおいて大きな進歩が達成され、CodeLlama-70B-Instruct を上回り、コード生成パフォーマンス リストのトップに到達しました。 StarCoder2-15B-Instruct のユニークな特徴は、その純粋な自己調整戦略であり、トレーニング プロセス全体がオープンで透過的で、完全に自律的で制御可能です。このモデルは、高価な手動アノテーションに頼ることなく、StarCoder-15B 基本モデルの微調整に応じて、StarCoder2-15B を介して数千の命令を生成します。

新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 Jul 25, 2024 am 06:42 AM

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 Jul 17, 2024 pm 06:37 PM

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性​​を実証しています。 「S」で始まる関連研究

SKハイニックスは8月6日に12層HBM3E、321層NANDなどのAI関連新製品を展示する。 SKハイニックスは8月6日に12層HBM3E、321層NANDなどのAI関連新製品を展示する。 Aug 01, 2024 pm 09:40 PM

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス

AIなどの市場を開拓するグローバルファウンドリーズがタゴール・テクノロジーの窒化ガリウム技術と関連チームを買収 AIなどの市場を開拓するグローバルファウンドリーズがタゴール・テクノロジーの窒化ガリウム技術と関連チームを買収 Jul 15, 2024 pm 12:21 PM

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G

See all articles