人工知能がクラウド コンピューティング管理の改善にどのように役立つか
クラウド管理を検討する場合、企業は主にパフォーマンスの監視、セキュリティの維持、コンプライアンスの確保などの運用プロセスに関心を持ちます。これらはビジネスを成功させるための鍵ですが、クラウド管理の一部にすぎません。
見落とされがちな鍵は、直感的なツールと統合されたサポート プロセスを通じて、ユーザー エクスペリエンスを向上させ、企業の IT インフラストラクチャの問題を解決することです。人工知能技術の発展により、これらの機能的ギャップは徐々に埋められるでしょう。
人工知能クラウド コンピューティングとは何ですか?
人工知能クラウド コンピューティングは、人工知能アルゴリズムを使用して、アプリケーション、サービス、データ処理などのさまざまな操作を自動的に実行するクラウド コンピューティング システムです。その目標は、クラウド コンピューティング環境を管理、監視、最適化する新しい方法をユーザーに提供することです。
クラウド コンピューティングにおける人工知能の利点
人工知能は、セキュリティ、バックアップ手順、ソフトウェア アプリケーションの改善においてすでに役割を果たしています。さらに、企業は管理慣行を最適化するために人工知能をクラウド管理に適用することも行っています。
(1) データ セキュリティの強化
企業がクラウドベースのソリューションにますます注目するようになるにつれて、データ セキュリティが大きな問題になっています。人工知能は、大量のデータを迅速かつ正確に分析する機能を通じて、ネットワーク内の潜在的な脅威や脆弱性を検出するのに役立ちます。さらに、AI は妨害行為の試みや不正アクセスを示す可能性のある異常なアクティビティを識別できます。したがって、人工知能はデータセキュリティにおいて大きな可能性を秘めています。
全体的に、人工知能は企業がデータをより深く理解し、データがどのように使用されているか、どこに侵害の可能性があるかを理解するのに役立ちます。
(2) データ管理の強化
多くの企業は大量のデータをデータセンターに保存していますが、すべてのデータがビジネス目的で使用されるわけではありません。 AI システムを利用してデータを分析すると、どのデータが関連しており、どのデータが関連していないかを判断できるため、ストレージ コストが削減され、必要なときに必要なデータに簡単にアクセスできるようになります。
AI システムは、インフラストラクチャの分析と最適化に加えて、データを自動的に分析して最適化することもできます。その結果、企業は手動での情報の収集や分析について心配する必要がなくなります。
(3) サービスとしての人工知能
多くの企業は、専門の開発者やデータ サイエンティストにアクセスできないため、人工知能テクノロジーを自社のインフラストラクチャに導入することに苦労しています。しかし、サービスとしての人工知能 (AIaaS) ソリューションを使用すると、これらのサービスは従量課金制で、必要な場合にのみアクセスできます。
データの分析やインフラストラクチャの管理のために人を雇用したりトレーニングしたりするのではなく、これらのタスクを自動システムにアウトソーシングするだけです。これにより、すべてが正しく行われるようにしながら、時間とお金を節約できます。
(4) コスト削減
企業がインフラストラクチャ、データベース、アプリケーションを自動化、最適化、改善できるほど、運用にかかる費用が削減されます。たとえば、後で役立つ可能性がある場合に備えてすべてを無期限に保存するのではなく、自動システムを使用してデータを分析することで、ストレージ コストを削減できるとします。この場合、時間の経過とともに大幅な節約になります。
人工知能技術を活用してクラウド管理環境を最適化することで、クラウド管理環境を常に最良の状態に保ちながら、保守費や人件費などの管理コストを削減できます。
(5) 機械学習と人工知能による自動化
クラウド環境は非常に動的であり、効果的に管理するには自動化が必要です。これには、容量計画、リソースのスケジュール設定、コストの最適化などの自動化されたタスクが含まれます。これらは人間にとっては時間がかかりますが、機械にとっては簡単です。
機械学習アルゴリズムは、予測分析と自動化された意思決定に使用でき、これらのタスクにおける人間の介入を軽減します。これらの機械学習モデルは、過去のデータから継続的に学習し、さまざまなセンサーからのリアルタイム入力に基づいて異常を検出したり、将来の結果を予測したりします。
(6) 自然言語処理 (NLP) を使用して重大なイベントを診断する
自然言語処理 (NLP) は、コンピューターが人間の言語 (自然言語) を解釈するのに役立ちます。情報検索 (検索エンジン)、機械翻訳 (Google 翻訳)、スパム フィルタリング、デジタル アシスタントなどの分野で広く使用されています。
クラウド管理では、手動介入なしで主要なイベントを自動的に診断できます。
(7) 自動プロビジョニングとプロビジョニング解除
従来の企業 IT 設定では、IT リソースのプロビジョニングとプロビジョニング解除は手動で行われます。ただし、標準プロトコルがないため、これは非常に時間がかかり、エラーが発生しやすいプロセスです。さらに、ピーク時間帯には、人間はこれらの手動プロセスを維持するのに苦労します。
現在、ほとんどの企業は、API と機械学習アルゴリズムを使用してこれらのプロセスを自動化する自動プロビジョニングおよびプロビジョニング解除ツールを導入しています。
(8)動的負荷分散
動的負荷分散は、現在のワークロードに基づいてさまざまなサーバー間で負荷を動的に割り当てることで、リソースの効率的な利用を保証します。たとえば、あるサーバーが他のサーバーよりも多くのリクエストを処理する場合、リクエストは他のサーバーに分散される可能性があります。同様に、特定のサーバーが十分に活用されていない場合、リクエストはそのサーバーから移動される可能性があります。
(9) パフォーマンスの監視とアラート
パフォーマンスの監視には、アプリケーションのパフォーマンス メトリックの長期的な監視が含まれますが、アラートには、問題の発生時に通知が送信されます。どちらも、クラウド環境で高品質のサービス レベルを維持するために必要です。機械学習と人工知能を使用して、IT システムの動作の異常な変化を監視し、警告することができます。
企業はどのように人工知能をクラウド管理に導入できますか?
人工知能ソリューションを企業の IT インフラストラクチャに導入する最初のステップは、どのようなビジネスを解決しようとしているのかを把握することです。それは問題であり、ビジネスの全体的な戦略における人工知能の役割です。
さらに、既存のプロセスを強化するために使用するのか、それとも完全に置き換えるために使用するのか、また、それがビジネスの広範なデジタル変革の取り組みにどのように適合するのかを決定する必要があります。これらの考慮事項は、企業が今後の実装計画を策定するのに役立ちます。
クラウドと機械学習およびビッグデータ分析を組み合わせたハイブリッド アプローチ
ビッグデータがなければ、機械学習とクラウド コンピューティングが不足する可能性があります。 AI ソリューションを効果的に活用するには、製品の詳細、販売データ、顧客関係管理 (CRM) データなど、ビジネスからのさまざまな情報が必要になります。
これらの異なる情報ソースを統合する効果的なクラウド管理プログラムを実装する最善の方法には、クラウド コンピューティングと機械学習およびビッグ データ分析を組み合わせたハイブリッド アプローチを開発することが含まれます。 3 つのシステムをすべて組み合わせることで、将来の結果を予測するための正確なモデルを作成するために十分な関連データにアクセスできるようになります。
事前トレーニングされたモデル
人工知能の使用を開始する最も簡単な方法の 1 つは、特定のタスクに既存の事前トレーニングされたモデルを使用することです。これらのモデルを使用すると、企業は高度な AI 技術を最初からトレーニングすることなく活用できます。また、データの収集と準備について心配する必要がなく、入力として使用できるデータ セットだけが必要であることも意味します。
機械学習は反復的なオペレーションを自動化します
機械学習をクラウド管理ツールとして使用すると、コストを削減し、ワークフローを合理化できます。アルゴリズムに特定のタスクの実行方法を学習させると、アルゴリズムは戻って操作を再度完了できるため、人間はより高いレベルのタスクを管理できるようになります。
クラウド管理における人工知能の未来
人工知能テクノロジーは、長い間 SF の定番でした。現在、現実世界の問題を解決するために使用されています。自動運転車から医療診断に至るまで、企業はより優れた製品をこれまで以上に迅速に開発するために人工知能に依存し始めています。人工知能テクノロジーの最新のイノベーションは、ディープラーニング ニューラル ネットワークの機械学習を通じて、より賢明なビジネス上の意思決定を行うことを目的としています。
これらの進歩を活用するには、企業は常に利用可能で信頼性の高いハイパフォーマンス コンピューティング リソースにアクセスする必要があります。したがって、複数のクラウド プラットフォームにわたってパフォーマンスと柔軟性を最大化するには、必要に応じて拡張できるクラウド管理ソリューションが不可欠です。
以上が人工知能がクラウド コンピューティング管理の改善にどのように役立つかの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

本サイトの7月31日のニュースによると、テクノロジー大手アマゾンは火曜日、クラウドコンピューティング技術に関連するアマゾンの十数件の特許を侵害しているとして、フィンランドの通信会社ノキアをデラウェア州連邦裁判所に告訴した。 1. Amazon は訴訟の中で、Nokia が自社のクラウド サービス製品を強化するために、クラウド コンピューティング インフラストラクチャ、セキュリティおよびパフォーマンス テクノロジを含む Amazon クラウド コンピューティング サービス (AWS) 関連テクノロジを悪用したと述べました。訴状によると、アマゾンは2006年にAWSを立ち上げ、その画期的なクラウドコンピューティング技術は2000年代初頭から開発されていたという。訴状には「アマゾンはクラウドコンピューティングのパイオニアだが、現在ノキアはアマゾンの特許取得済みのクラウドコンピューティング技術革新を許可なく使用している」と書かれている。アマゾン、ブロック差し止めを裁判所に求める

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。
