MySql数据库的优化_MySQL
bitsCN.com
MySql数据库的优化
一、SQL语句的优化
二、建立索引
三、表的水平划分/垂直划分
四、数据库表的合理设计
五、读写分离技术
MySQL数据库的优化
2
—通过show global status命令了解各种SQL的执行频率
SQL语句优化的步骤1
MySQL客户端连接成功后,通过使用
show global status like ‘Com_select’ show global status like ‘Com_insert’ show global status like ‘Com_update’ show global status like ‘Com_delete’
得到增删改查语句所执行的次数。
3
—定位慢查询
SQL语句优化的步骤2
在默认情况下mysql不记录慢查询日志,需要在启动的时指定bin/mysqld.exe - -slow-query-log
设定慢查询时间:
set long_query_time=2;
通过慢查询日志定位执行效率较低的SQL语句。慢查询日志记录了所有执行时间超过long_query_time所设置的SQL语句。
4
—explain分析问题
SQL语句优化的步骤3
Explain select * from emp where ename=“zrlcHd”
select_type:表示查询的类型。
table:输出结果集的表
type:表示表的连接类型
possible_keys:表示查询时,
可能使用的索引
key:表示实际使用的索引
key_len:索引字段的长度
rows:扫描的行数
Extra:执行情况的描述和说明
5
—不用加内存,不用改程序,最物美价廉
建立索引
好外:
加快了查询速度(select )
坏处:
降低了增,删,改的速度(update/delete/insert)
增大了表的文件大小
原则:
不过度索引
较频繁的作为查询条件字段应该创建索引
唯一性太差的字段不适合单独创建索引。例如:给性别"男","女"加索引,意义不大
6
索引的使用
索引的种类:普通索引,主键索引,唯一索引,全文索引
建立索引create [UNIQUE|FULLTEXT] index index_name on tbl_name (col_name [(length)] [ASC | DESC] , …..);alter table table_name ADD INDEX [index_name] (index_col_name,...) 添加主键(索引) ALTER TABLE 表名 ADD PRIMARY KEY(列名,..); 联合主键删除索引DROP INDEX index_name ON tbl_name;alter table table_name drop index index_name; 删除主键(索引)比较特别: alter table t_b drop primary key;查询索引:show index from table_name;
7
表的水平划分
如果一个表的记录数太多了,比如上千万条,而且需要经常检索,那么我们就有必要化整为零了如果我拆成100个表,那么每个表只有10万条记录。
表的垂直划分
有些表记录数并不多,可能也就2、3万条,但是字段却很长,表占用空间很大,检索表时需要执行大量I/O,严重降低了性能。这个时候需要把大的字段拆分到另一个表,并且该表与原表是一对一的关系。
8
数据库表的合理设计
尽量符合3NF,有时为了提高运行效率适当降低范式标准,适当保留冗余数据.
选择字段的一般原则是保小不保大,能用占用字节小的字段就不用大字段。比如主键,建议使用自增类型,这样省空间。
在精度要求高的应用中,建议使用定点数来存储数值,以保证结果的准确性。
选择合适的存储引擎:
MyISAM:如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性、并发性要求不是很高。其优势是访问的速度快。
InnoDB:提供了具有提交、回滚和崩溃恢复能力的事务安全。但是对比MyISAM,写的处理效率差一些并且会占用更多的磁盘空间
9
数据库表的合理设计
对于存储引擎是MyISAM的数据库,如果经常做删除和修改记录的操作,定时执行optimize tabletable_name; 功能对表进行碎片整理。
优化group by 语句
默认情况,MySQL对所有的group by col1,col2进行排序。这与在查询中指定order by col1, col2类似。如果查询中包括group by但用户想要避免排序结果的消耗,则可以使用order by null禁止排序。
如果想要在含有or的查询语句中利用索引,则or之间的每个条件列都必须用到索引,如果没有索引,则应该考虑增加索引
select * from 表名 where col1=‘**’or col2=‘**’
10
读写分离技术
Master
Slave1
Slave2
Slave3
主库master用来写入(增删改),slave1—slave3都用来做读出(select)。
目的:减少每个数据库的压力,提高效率。
实现要求:
程序控制使写都操作master,读都操作slave。
实现master到slave的同步,官方有个mysql-proxy
bitsCN.com
ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック

StableDiffusion3 の論文がついに登場しました!このモデルは2週間前にリリースされ、Soraと同じDiT(DiffusionTransformer)アーキテクチャを採用しており、リリースされると大きな話題を呼びました。前バージョンと比較して、StableDiffusion3で生成される画像の品質が大幅に向上し、マルチテーマプロンプトに対応したほか、テキスト書き込み効果も向上し、文字化けが発生しなくなりました。 StabilityAI は、StableDiffusion3 はパラメータ サイズが 800M から 8B までの一連のモデルであると指摘しました。このパラメーター範囲は、モデルを多くのポータブル デバイス上で直接実行できることを意味し、AI の使用を大幅に削減します。

最初のパイロットおよび重要な記事では、主に自動運転技術で一般的に使用されるいくつかの座標系と、それらの間の相関と変換を完了し、最終的に統合環境モデルを構築する方法を紹介します。ここでの焦点は、車両からカメラの剛体への変換 (外部パラメータ)、カメラから画像への変換 (内部パラメータ)、および画像からピクセル単位への変換を理解することです。 3D から 2D への変換には、対応する歪み、変換などが発生します。要点:車両座標系とカメラ本体座標系を平面座標系とピクセル座標系に書き換える必要がある 難易度:画像の歪みを考慮する必要がある 歪み補正と歪み付加の両方を画面上で補正する2. はじめに ビジョンシステムには、ピクセル平面座標系 (u, v)、画像座標系 (x, y)、カメラ座標系 ()、世界座標系 () の合計 4 つの座標系があります。それぞれの座標系には関係性があり、

自動運転では軌道予測が重要な役割を果たしており、自動運転軌道予測とは、車両の走行過程におけるさまざまなデータを分析し、将来の車両の走行軌跡を予測することを指します。自動運転のコアモジュールとして、軌道予測の品質は下流の計画制御にとって非常に重要です。軌道予測タスクには豊富な技術スタックがあり、自動運転の動的/静的知覚、高精度地図、車線境界線、ニューラル ネットワーク アーキテクチャ (CNN&GNN&Transformer) スキルなどに精通している必要があります。始めるのは非常に困難です。多くのファンは、できるだけ早く軌道予測を始めて、落とし穴を避けたいと考えています。今日は、軌道予測に関するよくある問題と入門的な学習方法を取り上げます。関連知識の紹介 1. プレビュー用紙は整っていますか? A: まずアンケートを見てください。

この論文では、自動運転においてさまざまな視野角 (遠近法や鳥瞰図など) から物体を正確に検出するという問題、特に、特徴を遠近法 (PV) 空間から鳥瞰図 (BEV) 空間に効果的に変換する方法について検討します。 Visual Transformation (VT) モジュールを介して実装されます。既存の手法は、2D から 3D への変換と 3D から 2D への変換という 2 つの戦略に大別されます。 2D から 3D への手法は、深さの確率を予測することで高密度の 2D フィーチャを改善しますが、特に遠方の領域では、深さ予測に固有の不確実性により不正確さが生じる可能性があります。 3D から 2D への方法では通常、3D クエリを使用して 2D フィーチャをサンプリングし、Transformer を通じて 3D と 2D フィーチャ間の対応のアテンション ウェイトを学習します。これにより、計算時間と展開時間が増加します。

著者の個人的な考えの一部 自動運転の分野では、BEV ベースのサブタスク/エンドツーエンド ソリューションの開発に伴い、高品質のマルチビュー トレーニング データとそれに対応するシミュレーション シーンの構築がますます重要になってきています。現在のタスクの問題点に対応して、「高品質」は 3 つの側面に分離できます。 さまざまな次元のロングテール シナリオ: 障害物データ内の近距離車両、車両切断中の正確な進行角、車線などラインデータ 曲率の異なるカーブやランプ・合流・合流などの撮影が難しいシーン。これらは多くの場合、大量のデータ収集と複雑なデータ マイニング戦略に依存しており、コストがかかります。 3D 真の値 - 一貫性の高い画像: 現在の BEV データ取得は、センサーの設置/校正、高精度マップ、再構成アルゴリズム自体のエラーの影響を受けることがよくあります。これが私を導いた

19 年前の論文を突然発見 GSLAM: A General SLAM Framework and Benchmark オープンソース コード: https://github.com/zdzhaoyong/GSLAM 全文に直接アクセスして、この作品の品質を感じてください ~ 1 抽象的な SLAM テクノロジー近年多くの成功を収め、多くのハイテク企業の注目を集めています。ただし、既存または新たなアルゴリズムへのインターフェイスを使用して、速度、堅牢性、移植性に関するベンチマークを効果的に実行する方法は依然として問題です。この論文では、GSLAM と呼ばれる新しい SLAM プラットフォームを提案します。これは、評価機能を提供するだけでなく、研究者が独自の SLAM システムを迅速に開発するための有用な方法を提供します。

この四角い男性は、目の前にいる「招かれざる客」の正体について考えながら眉をひそめていることに注意してください。彼女が危険な状況にあることが判明し、これに気づくと、彼女は問題を解決するための戦略を見つけるためにすぐに頭の中で探索を始めました。最終的に、彼女は現場から逃走し、できるだけ早く助けを求め、直ちに行動を起こすことにしました。同時に、反対側の人も彼女と同じことを考えていた……『マインクラフト』では、登場人物全員が人工知能によって制御されている、そんなシーンがありました。それぞれに個性的な設定があり、例えば先ほどの女の子は17歳ながら賢くて勇敢な配達員です。彼らは記憶力と思考力を持ち、Minecraft の舞台となるこの小さな町で人間と同じように暮らしています。彼らを動かすのはまったく新しいものであり、

上記と著者の個人的な理解は、画像ベースの 3D 再構成は、一連の入力画像からオブジェクトまたはシーンの 3D 形状を推測することを含む困難なタスクであるということです。学習ベースの手法は、3D形状を直接推定できることから注目を集めています。このレビュー ペーパーは、これまでにない新しいビューの生成など、最先端の 3D 再構成技術に焦点を当てています。入力タイプ、モデル構造、出力表現、トレーニング戦略など、ガウス スプラッシュ メソッドの最近の開発の概要が提供されます。未解決の課題と今後の方向性についても議論します。この分野の急速な進歩と 3D 再構成手法を強化する数多くの機会を考慮すると、アルゴリズムを徹底的に調査することが重要であると思われます。したがって、この研究は、ガウス散乱の最近の進歩の包括的な概要を提供します。 (親指を上にスワイプしてください
