動的配列の定義方法
動的配列は、プログラムの実行中にオンデマンドでメモリ領域を割り当てたり解放したりできるデータ構造です。静的配列と比較して、動的配列の長さは動的に拡張または縮小できるため、より柔軟でさまざまなニーズに適応できます。多くのプログラミング言語では、動的配列はヒープ メモリを使用して実装されます。
ほとんどのプログラミング言語では、動的配列の定義と使用法は似ています。以下では、例として Python と C を使用して、動的配列の定義と使用法を詳しく紹介します。
Python
Python では、動的配列の定義には組み込みの list
クラスが使用されます。[]
を直接使用して、空の動的配列。 Python の動的配列は、異なる型の要素を保持することも、異なる型の要素を同時に保持することもできます。
次は、動的配列を作成して使用するためのサンプル コードです:
# 创建一个空的动态数组 dynamic_array = [] # 添加元素到动态数组 dynamic_array.append(10) dynamic_array.append("Hello") dynamic_array.append(3.14) # 访问和修改动态数组的元素 print(dynamic_array[0]) # 输出: 10 print(dynamic_array[1]) # 输出: Hello dynamic_array[2] = "World" print(dynamic_array[2]) # 输出: World # 删除动态数组的元素 dynamic_array.pop(1) # 移除索引为1的元素 print(dynamic_array) # 输出: [10, 3.14]
C
C では、動的配列の定義はポインターと動的メモリ割り当て演算子に依存します。 new
と delete
。 new
演算子を使用してヒープ上にメモリを動的に割り当て、ポインタを使用して動的配列を操作できます。
次は、C を使用して動的配列を定義および操作するサンプル コードです:
#include<iostream> int main() { int* dynamic_array = new int[5]; // 创建一个大小为5的动态数组 // 添加元素到动态数组 dynamic_array[0] = 10; dynamic_array[1] = 20; dynamic_array[2] = 30; dynamic_array[3] = 40; dynamic_array[4] = 50; // 访问和修改动态数组的元素 std::cout << dynamic_array[0] << std::endl; // 输出: 10 std::cout << dynamic_array[1] << std::endl; // 输出: 20 dynamic_array[2] = 100; std::cout << dynamic_array[2] << std::endl; // 输出: 100 // 删除动态数组 delete[] dynamic_array; return 0; }
上記は、2 つの一般的なプログラミング言語である Python と C での動的配列の定義と使用です。どのプログラミング言語を使用する場合でも、動的配列の概念と操作をマスターすると、プログラムをより柔軟かつ効率的に作成できます。この記事が読者のお役に立てれば幸いです。
以上が動的配列の定義方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









C言語データ構造:ツリーとグラフのデータ表現は、ノードからなる階層データ構造です。各ノードには、データ要素と子ノードへのポインターが含まれています。バイナリツリーは特別なタイプの木です。各ノードには、最大2つの子ノードがあります。データは、structreenode {intdata; structreenode*left; structreenode*右;}を表します。操作は、ツリートラバーサルツリー(前向き、順序、および後期)を作成します。検索ツリー挿入ノード削除ノードグラフは、要素が頂点であるデータ構造のコレクションであり、近隣を表す右または未照明のデータを持つエッジを介して接続できます。

ファイルの操作の問題に関する真実:ファイルの開きが失敗しました:不十分な権限、間違ったパス、およびファイルが占有されます。データの書き込みが失敗しました:バッファーがいっぱいで、ファイルは書き込みできず、ディスクスペースが不十分です。その他のFAQ:遅いファイルトラバーサル、誤ったテキストファイルエンコード、およびバイナリファイルの読み取りエラー。

C35の計算は、本質的に組み合わせ数学であり、5つの要素のうち3つから選択された組み合わせの数を表します。計算式はC53 = 5です! /(3! * 2!)。これは、ループで直接計算して効率を向上させ、オーバーフローを避けることができます。さらに、組み合わせの性質を理解し、効率的な計算方法をマスターすることは、確率統計、暗号化、アルゴリズム設計などの分野で多くの問題を解決するために重要です。

C言語関数は、コードモジュール化とプログラム構築の基礎です。それらは、宣言(関数ヘッダー)と定義(関数体)で構成されています。 C言語は値を使用してパラメーターをデフォルトで渡しますが、外部変数はアドレスパスを使用して変更することもできます。関数は返品値を持つか、または持たない場合があり、返品値のタイプは宣言と一致する必要があります。機能の命名は、ラクダを使用するか、命名法を強調して、明確で理解しやすい必要があります。単一の責任の原則に従い、機能をシンプルに保ち、メンテナビリティと読みやすさを向上させます。

C言語関数名の定義には、以下が含まれます。関数名は、キーワードとの競合を避けるために、明確で簡潔で統一されている必要があります。関数名にはスコープがあり、宣言後に使用できます。関数ポインターにより、関数を引数として渡すか、割り当てます。一般的なエラーには、競合の命名、パラメータータイプの不一致、および未宣言の関数が含まれます。パフォーマンスの最適化は、機能の設計と実装に焦点を当てていますが、明確で読みやすいコードが重要です。

C言語関数は再利用可能なコードブロックです。彼らは入力を受け取り、操作を実行し、結果を返すことができます。これにより、再利用性が改善され、複雑さが軽減されます。関数の内部メカニズムには、パラメーターの渡し、関数の実行、および戻り値が含まれます。プロセス全体には、関数インラインなどの最適化が含まれます。単一の責任、少数のパラメーター、命名仕様、エラー処理の原則に従って、優れた関数が書かれています。関数と組み合わせたポインターは、外部変数値の変更など、より強力な関数を実現できます。関数ポインターは機能をパラメーターまたはストアアドレスとして渡し、機能への動的呼び出しを実装するために使用されます。機能機能とテクニックを理解することは、効率的で保守可能で、理解しやすいCプログラムを書くための鍵です。

std :: uniqueは、コンテナ内の隣接する複製要素を削除し、最後まで動かし、最初の複製要素を指すイテレーターを返します。 STD ::距離は、2つの反復器間の距離、つまり、指す要素の数を計算します。これらの2つの機能は、コードを最適化して効率を改善するのに役立ちますが、隣接する複製要素をstd ::のみ取引するというような、注意すべき落とし穴もあります。 STD ::非ランダムアクセスイテレーターを扱う場合、距離は効率が低くなります。これらの機能とベストプラクティスを習得することにより、これら2つの機能の力を完全に活用できます。

CとC#には類似点がありますが、それらは完全に異なります。Cはプロセス指向の手動メモリ管理、およびシステムプログラミングに使用されるプラットフォーム依存言語です。 C#は、デスクトップ、Webアプリケーション、ゲーム開発に使用されるオブジェクト指向のガベージコレクション、およびプラットフォーム非依存言語です。
