


Vincent Tu の新しい SOTA! Pika、北京大学、スタンフォードが共同で文勝図の 2 つの主要な問題の解決に役立つマルチモーダル RPG を開始
最近、北京大学、スタンフォード大学、および人気のピカ研究所は、大規模モデルのヴィンセント グラフの機能を新たなレベルに引き上げた研究を共同で発表しました。
論文アドレス: https://arxiv.org/pdf/2401.11708.pdf
コードアドレス: https://github.com/YangLing0818/RPG-DiffusionMaster
論文の著者は、マルチモーダル大規模言語モデル ( MLLM)、テキストから画像への生成/編集フレームワークを改善します。
言い換えれば、この方法は、複数の属性、関係、オブジェクトを含む複雑なテキスト プロンプトを処理する際のテキスト生成モデルのパフォーマンスを向上させることを目的としています。
早速、写真をご紹介します。
オレンジ色の緑のツインテールの女の子ドレスはソファに座っていますが、左側の大きな窓の下には散らかった机があり、ソファの右上には生き生きとした水族館があり、リアルなスタイルです。
オレンジ色のドレスを着た女の子ツインテールの彼女がソファに座っていて、大きな窓の隣には乱雑な机があり、右上にはにぎやかな水族館があり、部屋風のリアルさがあります。
# 複雑な関係を持つ複数のオブジェクトを前にして、画面全体の構造とモデルによって与えられる人物とオブジェクトの関係は非常に合理的で、見る人の目を輝かせます。 。
そして、同じプロンプトについて、現在の最先端の SDXL と DALL·E 3 のパフォーマンスを見てみましょう:
複数のプロパティを複数のオブジェクトにバインドするときの新しいフレームワークのパフォーマンスを見てみましょう:
左から右へ、白いシャツを着た金髪のポニーテールのヨーロッパの女の子、鳥のプリントされた青いシャツを着た茶色の巻き毛のアフリカの女の子、スーツを着た黒い短髪のアジア人の若者が楽しそうにキャンパスを歩いています.
左から右へ、白いシャツを着て金髪のポニーテールをしたヨーロッパの女の子、鳥がプリントされた青いシャツを着た茶色の巻き毛のアフリカの女の子、短い黒髪のスーツを着たアジア人の女の子、若者たちがキャンパスを楽しそうに歩いています。
研究者らは、複雑な画像生成プロセスを複数のサブ領域に分解するグローバル プランナーとして MLLM を使用し、このフレームワークを RPG (Recaption、Plan and Generate) と名付けました。ビルドタスク。
この論文では、地域的な組み合わせの生成を実現するための補完的な地域拡散を提案しており、テキストガイドによる画像の生成と編集をクローズドな RPG フレームワークに統合しています。 -loop 方式により汎化能力が向上します。
実験の結果、この記事で提案した RPG フレームワークは、特にマルチ環境において、DALL·E 3 や SDXL などの現在の最先端のテキスト画像拡散モデルよりも優れていることがわかりました。 -category オブジェクトの合成とテキスト画像のセマンティクス 配置の側面。
RPG フレームワークは、さまざまな MLLM アーキテクチャ (MiniGPT-4 など) および拡散バックボーン ネットワーク (ControlNet など) と広く互換性があることは注目に値します。
#RPG#現在のヴィンセント グラフ モデルには、主に 2 つの問題があります。 1. レイアウト ベースまたは注意ベースの方法では、大まかな空間ガイドしか提供できず、重複するオブジェクトを処理する; 2. フィードバック ベースの方法では、高品質のフィードバック データを収集する必要があり、追加のトレーニング コストが発生します。
これらの問題を解決するために、研究者は、次の図に示すように、RPG の 3 つの核となる戦略を提案しました。 ##複数のエンティティと関係を含む複雑なテキスト プロンプトが与えられた場合、最初に MLLM を使用してそれを基本プロンプトと高度に説明的なサブプロンプトに分解し、その後、マルチモーダル モデルの CoT プランニングを使用してイメージを分割します。空間を相補的なサブ領域に分割し、最後に相補的領域拡散を導入して、各サブ領域の画像を独立して生成し、各サンプリング ステップで集約します。
マルチモーダル再チューニング
テキスト キューを高度に説明的なキューに変換し、情報によって強化されたキューの理解と拡散モデルでの意味論的な整合性を提供します。
MLLM を使用してユーザー プロンプト y 内のキー フレーズを識別し、サブ項目を取得します。
# #Use LLM を使用して、テキスト プロンプトをさまざまなサブプロンプトに分解し、より詳細に再説明します。
#このようにして、より高密度で粒度の高いプロンプトを生成できます各サブキューの詳細を確認して、生成された画像の忠実度を効果的に高め、キューと画像間の意味論的な違いを減らします。
思考連鎖計画
画像空間を相補的なサブ領域に分割し、中断中に異なるサブプロンプトを割り当てます。ビルド タスクを複数の単純なサブタスクに分割します。
具体的には、画像空間 H × W がいくつかの相補的な領域に分割され、各エンハンサー プロンプトが特定の領域 R に割り当てられます。
MLLM の強力な思考連鎖推論機能を使用して、効果的な地域分割を実行します。取得した中間結果を分析することで、その後の画像合成のための詳細な原理と正確な指示を生成できます。
補足エリア拡散
各長方形のサブエリアでは、サブキューによってガイドされるコンテンツが独立して生成され、その後サイズ変更されて接続されます。これらのサブ領域を空間的にマージします。
#テキストガイドによる画像編集
上の画像に示すように。再話段階では、RPG は MLLM を字幕として使用してソース画像を再話し、その強力な推論機能を使用して画像とターゲット キューの間の詳細な意味論的な違いを特定し、入力画像がターゲット キューとどのように一致するかを直接分析します。
MLLM (GPT-4、Gemini Pro など) を使用して、数値精度、プロパティ バインディング、オブジェクトの関係に関する入力とターゲットの違いを確認します。結果として得られるマルチモーダル理解フィードバックは、推論編集計画のために MLLM に配信されます。
# 上記の 3 つの側面における生成効果のパフォーマンスを見てみましょう。最初は属性バインディングで、SDXL、DALL·E 3、LMD を比較します。
3 つのテストすべてにおいて、プロンプトの説明を最も正確に反映しているのは RPG だけであることがわかります。
#次に数値の精度があり、表示順序は上記と同じです (SDXL、DALL·E 3、LMD、RPG):
##——ヴィンセントの大型モデルなのでカウントがかなり難しいとは思いませんでしたが、RPGでは簡単に相手を倒しました。
最後の項目は、復元プロンプトの複雑な関係です:
さらに、次のこともできます。また、拡散は階層形式に拡張され、特定のサブ領域をより小さなサブ領域に分割します。
下の図に示すように、領域セグメンテーションの階層を追加すると、RPG はテキストから画像への生成を大幅に改善できます。これにより、複雑な生成タスクを処理するための新しい視点が提供され、任意の構成の画像を生成できるようになります。
以上がVincent Tu の新しい SOTA! Pika、北京大学、スタンフォードが共同で文勝図の 2 つの主要な問題の解決に役立つマルチモーダル RPG を開始の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

顔の検出および認識テクノロジーは、すでに比較的成熟しており、広く使用されているテクノロジーです。現在、最も広く使用されているインターネット アプリケーション言語は JS ですが、Web フロントエンドでの顔検出と認識の実装には、バックエンドの顔認識と比較して利点と欠点があります。利点としては、ネットワーク インタラクションの削減とリアルタイム認識により、ユーザーの待ち時間が大幅に短縮され、ユーザー エクスペリエンスが向上することが挙げられます。欠点としては、モデル サイズによって制限されるため、精度も制限されることが挙げられます。 js を使用して Web 上に顔検出を実装するにはどうすればよいですか? Web 上で顔認識を実装するには、JavaScript、HTML、CSS、WebRTC など、関連するプログラミング言語とテクノロジに精通している必要があります。同時に、関連するコンピューター ビジョンと人工知能テクノロジーを習得する必要もあります。 Web 側の設計により、次の点に注意してください。

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません
