目次
△NFM は「リープフロッグ」をシミュレートします
△NFM は「インク滴」をシミュレートします
研究者たちは、上記のアイデアに基づいて、物理学の
高品質の時空間信号圧縮を実行できるため、上記の高精度ではあるが達成不可能なシミュレーション方法が実現可能になります。
最新の SOTA を入手
ホームページ テクノロジー周辺機器 AI AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!

Feb 19, 2024 pm 06:50 PM
ai シミュレーション エミュレータ

機械学習により、コンピュータ グラフィックス (CG) シミュレーションがより現実的になります。

このメソッドは Neural Flow Maps (Neural Flow Maps、NFM) と呼ばれ、4 つの渦の煙を正確にシミュレートできます。

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!

より複雑なものも簡単に実装できます:

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!

この AI アプリケーションには、次のものがあることを知っておく必要があります。この時代では、CG 物理シミュレーションは依然として 伝統的な数値アルゴリズム によって支配されています。

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!
△NFM は「リープフロッグ」をシミュレートします

CG にニューラル ネットワークを適用すると、目もくらむような視覚効果を生み出すことができますが、物理的特性を厳密かつ堅牢に記述することはできません。 。

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!
△NFM は「インク滴」をシミュレートします

まさにこの理由から、ニューラル ネットワークに基づく物理シミュレーションはまだ 概念実証段階にあります。 (概念実証) 段階では、生成される効果は SOTA とは程遠いものです。

この複雑な問題を解決するために、ダートマス大学、ジョージア工科大学、スタンフォード大学の研究チームは、ニューラル フロー ダイアグラムと呼ばれる新しい方法を提案しました。ニューラル ネットワークの利点と高度な物理モデルを組み合わせて、前例のない視覚効果と物理的精度を実現しました。

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!

この論文はトップジャーナル ACM Transactions on Graphics (TOG) に掲載され、 は SIGGRAPH Asia 2023 の最優秀論文を受賞しました# ##。

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!

NFM とはどのようなものですか?

研究チームの中心的な視点は次のとおりです。AI を使用して物理的問題をより適切に解決したい場合、学習可能なモジュール

を既存のメソッド フレームワークに制限的に埋め込むことはできません (SPH、安定した流体) インチ。 既存の手法は、従来の数値手法の機能に合わせて調整されています。このため、機械学習の開発により、一連の新しい機能が提案されています

(NeRF の時空間信号分析など) コンパクトな表現)

多くの場合、既存のフレームワークでは見つかりません。 したがって、研究者は、既存のフレームワークに AI を適用するのではなく、AI によって提案される新しい機能に基づいて新しい数学的および数値的フレームワークを設計し、これらの機能の価値を最大化する方がよいと考えています。

物理モデル

研究者たちは、上記のアイデアに基づいて、物理学の

co-design

(co-design) を通じて SOTA を超えるモデルを構築しました。 AI流体シミュレーター。 物理部分では、NFM はまず、一般的なオイラー方程式

(ゲージ変換)

に対してゲージ変換を実行することにより、インパルスベースの 流体方程式のセットを使用します。速度場と流れマップ (流れマップ) およびその空間導関数が確立されます。 言い換えれば、流れマップに対する正確な数値解が得られる限り、進化する速度場を正確に再構成することができます。

フロー マップを最も正確に計算するために、NFM は慎重に設計された「双方向マーチング」 AI シミュレーターは物理シミュレーションに新しい SOTA を採用します! (双方向マーチング)

数値アルゴリズムを提案します。

このアルゴリズムは、既存のアルゴリズムよりも 3 ~ 5 桁正確ですが、長期の時空間 速度フィールドの保存も必要とします。

大規模な 3D シミュレーションの場合、単一フレームの速度フィールドを保存することは依然として困難ですが、数十または数百のフレームの速度フィールドを保存することはまったく不可能です。したがって、「双方向移動」アルゴリズムは正確ですが、従来の手段では実現できません。

ニューラル ネットワーク ストレージ

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!NFM は、フロー グラフ ベースの物理モデルで高精度の速度フィールドを保存する必要性と、暗黙的なニューラル表現を巧みに組み合わせます

(暗黙的ニューラル表現 (INR)

高品質の時空間信号圧縮を実行できるため、上記の高精度ではあるが達成不可能なシミュレーション方法が実現可能になります。

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!
AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!

INR は通常、シナリオごとに 1 回トレーニングするだけで済みますが、NFM はこれを中間変数として使用し、シミュレーション プロセス中に継続的に更新します。 INR のパフォーマンスに関するより厳しい要件を提示します。

これに応えて、NFM は SSNF と呼ばれる新しい高性能 INR を提案します。

SSNF は、空間的スパース ストレージ内の各グリッド ポイントの開口状態を自動的に計画し、ラグランジュ多項式に基づいた時間処理スキームにより、Instant-NGP、KPlanes、その他の方法よりも高速な収束速度と高い圧縮率を実現します。そしてより高い記憶精度。

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!

最新の SOTA を入手

実験結果は、AI ベースのシミュレーターとして、NFM が SOTA 手法 (bimocq、covector 流体、および MC) を大幅に上回っていることを示しています。 R.

2D 点渦 (点渦) を維持した実験では、NFM の平均絶対誤差は、他の 3 つと比較して少なくとも 14 倍、最大で 308 倍減少しました。

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!

3D リープフロッギング渦実験では、NFM によってエネルギーを節約する能力も大幅に向上しました。

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!

同時に、この数値的能力は、自然現象のより優れたシミュレーションに反映されています。物理法則によれば、カエル​​の跳躍における 2 対の渦管NFM では 5 回のフロッグ ジャンプが完了しても 2 つの渦管は分離されたままですが、比較方法では最大 3 回で完全に結合します。

AI シミュレーターは物理シミュレーションに新しい SOTA を採用します!

最後に、この記事では一連の計算例

(固体相互作用、レイリー テイラー不安定性、渦管の再結合など) を使って説明します。複雑な視覚効果の作成における NFM の優位性。 このレベルで注目に値するのは、AI は流体により多くの詳細を与えるために使用されますが、既存の AI 超解像度アルゴリズムは画像の詳細を改善することしかできませんが、NFM は物理的なこの方法を使用する点で画期的な進歩を遂げています。動的詳細が改善され、それによって流体シミュレーションのリアリズムが根本的に向上します。

プロジェクトリンク: https://yitongdeng-projects.github.io/neural_flow_maps_webpage/

以上がAI シミュレーターは物理シミュレーションに新しい SOTA を採用します!の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

vue.jsのストリングをオブジェクトに変換するためにどのような方法が使用されますか? vue.jsのストリングをオブジェクトに変換するためにどのような方法が使用されますか? Apr 07, 2025 pm 09:39 PM

vue.jsのオブジェクトに文字列を変換する場合、標準のjson文字列にはjson.parse()が推奨されます。非標準のJSON文字列の場合、文字列は正規表現を使用して処理し、フォーマットまたはデコードされたURLエンコードに従ってメソッドを削減できます。文字列形式に従って適切な方法を選択し、バグを避けるためにセキュリティとエンコードの問題に注意してください。

インストール後にMySQLの使用方法 インストール後にMySQLの使用方法 Apr 08, 2025 am 11:48 AM

この記事では、MySQLデータベースの操作を紹介します。まず、MySQLWorkBenchやコマンドラインクライアントなど、MySQLクライアントをインストールする必要があります。 1. mysql-uroot-pコマンドを使用してサーバーに接続し、ルートアカウントパスワードでログインします。 2。CreatedAtaBaseを使用してデータベースを作成し、データベースを選択します。 3. createTableを使用してテーブルを作成し、フィールドとデータ型を定義します。 4. INSERTINTOを使用してデータを挿入し、データをクエリし、更新することでデータを更新し、削除してデータを削除します。これらの手順を習得することによってのみ、一般的な問題に対処することを学び、データベースのパフォーマンスを最適化することでMySQLを効率的に使用できます。

MySQLを解決する方法は開始できません MySQLを解決する方法は開始できません Apr 08, 2025 pm 02:21 PM

MySQLの起動が失敗する理由はたくさんあり、エラーログをチェックすることで診断できます。一般的な原因には、ポートの競合(ポート占有率をチェックして構成の変更)、許可の問題(ユーザー許可を実行するサービスを確認)、構成ファイルエラー(パラメーター設定のチェック)、データディレクトリの破損(テーブルスペースの復元)、INNODBテーブルスペースの問題(IBDATA1ファイルのチェック)、プラグインロード障害(エラーログのチェック)が含まれます。問題を解決するときは、エラーログに基づいてそれらを分析し、問題の根本原因を見つけ、問題を防ぐために定期的にデータをバックアップする習慣を開発する必要があります。

vue.js文字列タイプの配列をオブジェクトの配列に変換する方法は? vue.js文字列タイプの配列をオブジェクトの配列に変換する方法は? Apr 07, 2025 pm 09:36 PM

概要:Vue.js文字列配列をオブジェクト配列に変換するための次の方法があります。基本方法:定期的なフォーマットデータに合わせてマップ関数を使用します。高度なゲームプレイ:正規表現を使用すると、複雑な形式を処理できますが、慎重に記述して考慮する必要があります。パフォーマンスの最適化:大量のデータを考慮すると、非同期操作または効率的なデータ処理ライブラリを使用できます。ベストプラクティス:コードスタイルをクリアし、意味のある変数名とコメントを使用して、コードを簡潔に保ちます。

Laravelの地理空間:インタラクティブマップと大量のデータの最適化 Laravelの地理空間:インタラクティブマップと大量のデータの最適化 Apr 08, 2025 pm 12:24 PM

700万のレコードを効率的に処理し、地理空間技術を使用したインタラクティブマップを作成します。この記事では、LaravelとMySQLを使用して700万を超えるレコードを効率的に処理し、それらをインタラクティブなマップの視覚化に変換する方法について説明します。最初の課題プロジェクトの要件:MySQLデータベースに700万のレコードを使用して貴重な洞察を抽出します。多くの人は最初に言語をプログラミングすることを検討しますが、データベース自体を無視します。ニーズを満たすことができますか?データ移行または構造調​​整は必要ですか? MySQLはこのような大きなデータ負荷に耐えることができますか?予備分析:キーフィルターとプロパティを特定する必要があります。分析後、ソリューションに関連している属性はわずかであることがわかりました。フィルターの実現可能性を確認し、検索を最適化するためにいくつかの制限を設定しました。都市に基づくマップ検索

Vue Axiosのタイムアウトを設定する方法 Vue Axiosのタイムアウトを設定する方法 Apr 07, 2025 pm 10:03 PM

Vue axiosのタイムアウトを設定するために、Axiosインスタンスを作成してタイムアウトオプションを指定できます。グローバル設定:Vue.Prototype。$ axios = axios.create({Timeout:5000});単一のリクエストで:this。$ axios.get( '/api/users'、{timeout:10000})。

MySQLインストール後にデータベースのパフォーマンスを最適化する方法 MySQLインストール後にデータベースのパフォーマンスを最適化する方法 Apr 08, 2025 am 11:36 AM

MySQLパフォーマンスの最適化は、インストール構成、インデックス作成、クエリの最適化、監視、チューニングの3つの側面から開始する必要があります。 1。インストール後、INNODB_BUFFER_POOL_SIZEパラメーターやclose query_cache_sizeなど、サーバーの構成に従ってmy.cnfファイルを調整する必要があります。 2。過度のインデックスを回避するための適切なインデックスを作成し、説明コマンドを使用して実行計画を分析するなど、クエリステートメントを最適化します。 3. MySQL独自の監視ツール(ShowProcessList、ShowStatus)を使用して、データベースの健康を監視し、定期的にデータベースをバックアップして整理します。これらの手順を継続的に最適化することによってのみ、MySQLデータベースのパフォーマンスを改善できます。

リモートシニアバックエンジニア(プラットフォーム)がサークルが必要です リモートシニアバックエンジニア(プラットフォーム)がサークルが必要です Apr 08, 2025 pm 12:27 PM

リモートシニアバックエンジニアの求人事業者:サークル場所:リモートオフィスジョブタイプ:フルタイム給与:$ 130,000- $ 140,000職務記述書サークルモバイルアプリケーションとパブリックAPI関連機能の研究開発に参加します。ソフトウェア開発ライフサイクル全体をカバーします。主な責任は、RubyonRailsに基づいて独立して開発作業を完了し、React/Redux/Relay Front-Endチームと協力しています。 Webアプリケーションのコア機能と改善を構築し、機能設計プロセス全体でデザイナーとリーダーシップと緊密に連携します。肯定的な開発プロセスを促進し、反復速度を優先します。 6年以上の複雑なWebアプリケーションバックエンドが必要です

See all articles