初心者向けの Python 機械学習チュートリアル: 最初の機械学習モデルを段階的に構築する
機械学習は、私たちが世界と交流する方法を信じられないほどの速度で変えています。自動運転車から医療診断に至るまで、機械学習は現在、さまざまな分野で広く普及しています。独自の機械学習の旅を始めたい場合は、この python機械学習チュートリアル が最適です。基本的な概念から始めて、最初の機械学習アプリケーションを段階的に構築できるようお手伝いします。
1. 機械学習の基本概念を理解する機械学習は本質的に、コンピューター システムがデータから自動的に学習し、そこから知識を抽出できるようにする学問です。これにより、
プログラムを行わずにシステムのパフォーマンスを向上させることができます。一般的な機械学習アルゴリズム には、教師あり学習、教師なし学習、強化学習アルゴリズムが含まれます。 2. 適切な機械学習ライブラリを選択する
Python には、さまざまな機械学習ライブラリから選択できます。最も人気のあるものには、Scikit-Learn、Keras、
Tensorflowがあります。これらのライブラリにはそれぞれ独自の長所と短所があるため、ライブラリを選択するときは特定のニーズを考慮する必要があります。 3. データを準備します
機械学習アルゴリズムには学習するデータが必要です。公開データセット、ネットワーク、独自の
データベースなど、さまざまなソースからデータを取得できます。データをトレーニングに使用する前に、アルゴリズムが処理しやすくするためにデータを前処理する必要があります。 4. 適切な機械学習アルゴリズムを選択する
データとタスクに基づいて、適切な機械学習アルゴリズムを選択する必要があります。線形回帰、ロジスティック回帰、デシジョン ツリー、サポート ベクター マシンなど、さまざまなアルゴリズムから選択できます。
5. 機械学習モデルをトレーニングするアルゴリズムを選択したら、トレーニング データを使用してアルゴリズムをトレーニングする必要があります。トレーニング プロセスには、データをアルゴリズムに入力し、アルゴリズムがデータから学習できるようにすることが含まれます。トレーニングが完了すると、新しいデータを分類または回帰できるトレーニング済みモデルが得られます。
6. 機械学習モデルを評価する機械学習モデルを実際のデータに適用する前に、それを評価する必要があります。モデルを評価する一般的な方法には、適合率、再現率、F1 スコアなどがあります。
7. 機械学習モデルをデプロイする機械学習モデルに満足したら、実稼働環境にデプロイできます。モデルをデプロイする一般的な方法には、クラウド プラットフォームとエッジ デバイスが含まれます。
8. 機械学習モデルを最適化する時間の経過とともに、機械学習モデルが時代遅れになる可能性があります。モデルの精度を維持するには、定期的に 最適化する必要があります。モデルを最適化する一般的な方法には、モデルの再トレーニング、ハイパーパラメーターの調整、さまざまなアルゴリズムの使用が含まれます。
以上が初心者向けの Python 機械学習チュートリアル: 最初の機械学習モデルを段階的に構築するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

MINIOオブジェクトストレージ:CENTOSシステムの下での高性能展開Minioは、Amazons3と互換性のあるGO言語に基づいて開発された高性能の分散オブジェクトストレージシステムです。 Java、Python、JavaScript、Goなど、さまざまなクライアント言語をサポートしています。この記事では、CentosシステムへのMinioのインストールと互換性を簡単に紹介します。 Centosバージョンの互換性Minioは、Centos7.9を含むがこれらに限定されない複数のCentosバージョンで検証されています。

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所

PytorchをCentosシステムにインストールする場合、適切なバージョンを慎重に選択し、次の重要な要因を検討する必要があります。1。システム環境互換性:オペレーティングシステム:Centos7以上を使用することをお勧めします。 Cuda and Cudnn:PytorchバージョンとCudaバージョンは密接に関連しています。たとえば、pytorch1.9.0にはcuda11.1が必要ですが、pytorch2.0.1にはcuda11.3が必要です。 CUDNNバージョンは、CUDAバージョンとも一致する必要があります。 Pytorchバージョンを選択する前に、互換性のあるCUDAおよびCUDNNバージョンがインストールされていることを確認してください。 Pythonバージョン:Pytorch公式支店

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。
