Java Collection Framework プロジェクトの実践: 実際のアプリケーションを構築し、フレームワークの強力な機能を体験します
『Java Collection Framework Project Practice』は、読者が実際のアプリケーションを構築し、フレームワークの強力な機能を探索できるように設計された実践的なガイドです。 PHP エディターの Banana が推薦する本書は、実践的なプロジェクトを通じて Java コレクション フレームワークの使用スキルを深く理解し、プログラミング能力を向上させます。この本は、基本的な知識から高度なアプリケーションまで包括的にカバーしており、あらゆるレベルの Java 開発者の学習リファレンスとして適しています。
この記事では、実際のアプリケーションを構築することによって、Java Collections Framework の能力と柔軟性を実証します。コレクション フレームワークを使用して学生データを保存および管理する、シンプルな学生管理システムを構築します。
まず、各学生の情報を表す学生クラスを作成する必要があります。このクラスには、生徒の名前、年齢、性別、成績などの属性が含まれている必要があります。
リーリー次に、学生データを保存および管理するための学生コレクションを作成する必要があります。必要に応じて、ArrayList または HashSet を使用して生徒オブジェクトを保存できます。
リーリーこれで、コレクション フレームワークのさまざまなメソッドを使用して生徒データの管理と処理を開始できます。たとえば、add メソッドを使用して学生オブジェクトをコレクションに追加し、remove メソッドを使用してコレクションから学生オブジェクトを削除し、get メソッドを使用してコレクション内の特定の学生オブジェクトを取得し、size メソッドを使用してオブジェクトのサイズを取得できます。コレクション。 。
リーリー収集フレームワークは、データの処理に役立つ多くの便利なアルゴリズムも提供します。たとえば、sort メソッドを使用して学生コレクションを sort することができ、binarySearch メソッドを使用してコレクション内の学生オブジェクトを見つけることができ、また shuffle メソッドを使用して要素をランダムにシャッフルすることもできます。コレクション。
リーリー収集フレームワークを使用することで、生徒データの管理と処理が容易になり、さまざまな機能を実装できます。コレクション フレームワークのパワーと柔軟性により、開発者は基礎となる実装の詳細を気にせずにビジネス ロジックに集中できます。
Java コレクション フレームワークは、開発者がデータを簡単に管理および処理し、開発効率とコードの可読性を向上させるのに役立つ非常に強力な ツール です。この記事では、実際のアプリケーションを構築することによって、コレクション フレームワークの能力と柔軟性を示します。この記事が読者の Java コレクション フレームワークの理解と使用に役立つことを願っています。
以上がJava Collection Framework プロジェクトの実践: 実際のアプリケーションを構築し、フレームワークの強力な機能を体験しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









ホーム画面から重要なものを削除してしまい、元に戻そうとしていますか?さまざまな方法でアプリのアイコンを画面に戻すことができます。 iPhoneでホーム画面から削除を元に戻す方法 前述したように、iPhoneでこの変更を復元する方法はいくつかあります。方法 1 – App ライブラリのアプリ アイコンを置き換える App ライブラリから直接ホーム画面にアプリ アイコンを配置できます。ステップ 1 – 横にスワイプして、アプリ ライブラリ内のすべてのアプリを見つけます。ステップ 2 – 前に削除したアプリのアイコンを見つけます。ステップ 3 – アプリのアイコンをメインライブラリからホーム画面上の正しい場所にドラッグするだけです。これが応用図です

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

Java で複雑なデータ構造を使用する場合、Comparator を使用して柔軟な比較メカニズムを提供します。具体的な手順には、コンパレータ クラスの定義、比較ロジックを定義するための比較メソッドの書き換えが含まれます。コンパレータインスタンスを作成します。 Collections.sort メソッドを使用して、コレクションとコンパレータのインスタンスを渡します。

01 今後の概要 現時点では、検出効率と検出結果の適切なバランスを実現することが困難です。我々は、光学リモートセンシング画像におけるターゲット検出ネットワークの効果を向上させるために、多層特徴ピラミッド、マルチ検出ヘッド戦略、およびハイブリッドアテンションモジュールを使用して、高解像度光学リモートセンシング画像におけるターゲット検出のための強化されたYOLOv5アルゴリズムを開発しました。 SIMD データセットによると、新しいアルゴリズムの mAP は YOLOv5 より 2.2%、YOLOX より 8.48% 優れており、検出結果と速度のバランスがより優れています。 02 背景と動機 リモート センシング技術の急速な発展に伴い、航空機、自動車、建物など、地表上の多くの物体を記述するために高解像度の光学式リモート センシング画像が使用されています。リモートセンシング画像の判読における物体検出

1. 58 Portraits プラットフォーム構築の背景 まず、58 Portraits プラットフォーム構築の背景についてお話ししたいと思います。 1. 従来のプロファイリング プラットフォームの従来の考え方ではもはや十分ではありません。ユーザー プロファイリング プラットフォームを構築するには、複数のビジネス分野からのデータを統合して、ユーザーの行動や関心を理解するためのデータ マイニングも必要です。最後に、ユーザー プロファイル データを効率的に保存、クエリ、共有し、プロファイル サービスを提供するためのデータ プラットフォーム機能も必要です。自社構築のビジネス プロファイリング プラットフォームとミドルオフィス プロファイリング プラットフォームの主な違いは、自社構築のプロファイリング プラットフォームは単一のビジネス ラインにサービスを提供し、オンデマンドでカスタマイズできることです。ミッドオフィス プラットフォームは複数のビジネス ラインにサービスを提供し、複雑な機能を備えていることです。モデリングを提供し、より一般的な機能を提供します。 2.58 中間プラットフォームのポートレート構築の背景のユーザーのポートレート 58

データ構造とアルゴリズムは Java 開発の基礎です。この記事では、Java の主要なデータ構造 (配列、リンク リスト、ツリーなど) とアルゴリズム (並べ替え、検索、グラフ アルゴリズムなど) について詳しく説明します。これらの構造は、スコアを保存するための配列、買い物リストを管理するためのリンク リスト、再帰を実装するためのスタック、スレッドを同期するためのキュー、高速検索と認証のためのツリーとハッシュ テーブルの使用など、実際の例を通じて説明されています。これらの概念を理解すると、効率的で保守しやすい Java コードを作成できるようになります。

AVL ツリーは、高速かつ効率的なデータ操作を保証するバランスのとれた二分探索ツリーです。バランスを達成するために、左回転と右回転の操作を実行し、バランスに反するサブツリーを調整します。 AVL ツリーは高さバランシングを利用して、ツリーの高さがノード数に対して常に小さくなるようにすることで、対数時間計算量 (O(logn)) の検索操作を実現し、大規模なデータ セットでもデータ構造の効率を維持します。

数を数えるのは簡単そうに思えますが、実際にやってみるととても難しいです。あなたが野生動物の個体数調査を実施するために自然のままの熱帯雨林に運ばれたと想像してください。動物を見かけたら必ず写真を撮りましょう。デジタル カメラでは追跡された動物の総数のみが記録されますが、固有の動物の数に興味がありますが、統計はありません。では、このユニークな動物群にアクセスする最善の方法は何でしょうか?この時点で、今すぐ数え始めて、最後に写真から各新種をリストと比較すると言わなければなりません。ただし、この一般的なカウント方法は、数十億エントリに達する情報量には適さない場合があります。インド統計研究所、UNL、およびシンガポール国立大学のコンピューター科学者は、新しいアルゴリズムである CVM を提案しました。長いリスト内のさまざまな項目の計算を近似できます。
