


Byte Wanka クラスターの技術詳細が公開: GPT-3 トレーニングは 2 日で完了し、計算能力使用率は NVIDIA Megatron-LM を超えました
Sora の技術分析が進むにつれて、AI インフラストラクチャ の重要性がますます顕著になります。
Byte と北京大学の新しい論文がこの時点で注目を集めました:
この記事では、Byte によって構築された Wanka クラスター が ## 完全なGPT-3 スケール モデル (175B) を #1.75 日 以内にトレーニングします。
MegaScale と呼ばれる運用システムを提案しました。課題。
12288 GPU で 1750 億パラメータの大規模言語モデルをトレーニングした場合、MegaScale は 55.2%(MFU) という計算能力使用率を達成しました。これは、NVIDIA Megatron-LM の 1.34 倍です。
この論文は、2023 年 9 月の時点で、Byte が 10,000 枚を超えるカードを備えた Ampere アーキテクチャ GPU(A100/A800) クラスターを確立し、現在大規模なホッパーを構築していることも明らかにしました。アーキテクチャ (H100/H800)クラスター。
Wanka クラスターに適した制作システム大規模モデルの時代において、GPU の重要性はもはや説明する必要はありません。 しかし、カードの数がいっぱいになったときに大規模なモデルのトレーニングを直接開始することはできません。GPU クラスターの規模が「10,000」レベルに達したときに、効率と安定性を実現する方法 自体がエンジニアリング上の困難な問題です。
#最初の課題: 効率。
大規模な言語モデルのトレーニングは単純な並列タスクではありません。モデルを複数の GPU に分散する必要があり、これらの GPU はトレーニング プロセスを共同で進めるために頻繁に通信する必要があります。通信に加えて、オペレーターの最適化、データの前処理、GPU メモリ消費などの要素はすべて、トレーニング効率を測定する指標である計算能力使用率
(MFU)に影響を与えます。
MFU は、理論上の最大スループットに対する実際のスループットの比率です。2 番目の課題: 安定性。
大規模な言語モデルのトレーニングには非常に長い時間がかかることが多く、これはトレーニング プロセス中の失敗や遅延が珍しくないことも意味します。
障害のコストは高くつくため、障害回復時間をいかに短縮するかが特に重要になります。
これらの課題に対処するために、ByteDance の研究者は MegaScale を構築し、Byte のデータ センターに導入して、さまざまな大規模モデルのトレーニングをサポートしました。
MegaScale は、NVIDIA Megatron-LM に基づいて改良されました。
具体的な改善には、アルゴリズムとシステム コンポーネントの共同設計、通信と計算の重複の最適化、オペレーターの最適化、データ パイプラインの最適化、ネットワーク パフォーマンスが含まれます。チューニング等:
- アルゴリズムの最適化: 研究者は、トレーニングを改善するために、並列化された Transformer ブロック、スライディング ウィンドウ アテンション メカニズム(SWA)、および LAMB をモデル アーキテクチャ オプティマイザーに導入しました。モデルの収束を犠牲にすることなく効率を向上させます。
- #通信の重複: 3D 並列処理における各コンピューティング ユニットの動作の詳細な分析に基づく(データ並列処理、パイプライン並列処理、テンソル並列処理) 、研究者らは、非クリティカルな実行パスでの操作によって生じる遅延を効果的に削減し、モデル トレーニングの各ラウンドの反復時間を短縮するための技術戦略を設計しました。
- 効率的な演算子: GEMM 演算子が最適化され、LayerNorm や GeLU などの演算が統合されて、複数のコアの起動に伴うオーバーヘッドが削減され、メモリ アクセス パターンが最適化されました。
- データ パイプラインの最適化: 非同期データの前処理と冗長なデータ ローダーの排除を通じて、データの前処理とロードを最適化し、GPU のアイドル時間を削減します。
- 集団通信グループの初期化: 分散トレーニングにおける NVIDIA マルチカード通信フレームワーク NCCL の初期化プロセスを最適化しました。 最適化を行わない場合、2048 GPU クラスターの初期化時間は 1047 秒ですが、最適化後は 5 秒未満に短縮でき、Wanka GPU クラスターの初期化時間は 30 秒未満に短縮できます。
- ネットワーク パフォーマンス チューニング: 3D 並列処理でマシン間のトラフィックを分析し、ネットワーク トポロジ設計、ECMP ハッシュ競合の削減、輻輳制御など、ネットワーク パフォーマンスを向上させるための技術ソリューションを設計します。および再送信タイムアウトの設定。
- フォールト トレランス: Wanka クラスターでは、ソフトウェアとハードウェアの障害は避けられません。研究者らは、自動障害特定と迅速な回復を実現するためのトレーニング フレームワークを設計しました。具体的には、システムコンポーネントとイベントを監視する診断ツールの開発、チェックポイントの高頻度保存トレーニングプロセスの最適化などが含まれます。
論文アドレス: https://arxiv.org/abs/2402.15627
以上がByte Wanka クラスターの技術詳細が公開: GPT-3 トレーニングは 2 日で完了し、計算能力使用率は NVIDIA Megatron-LM を超えましたの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









phpMyAdminを使用してデータテーブルを作成するには、次の手順が不可欠です。データベースに接続して、[新しいタブ]をクリックします。テーブルに名前を付けて、ストレージエンジンを選択します(InnoDB推奨)。列名、データ型、null値、その他のプロパティを許可するかどうかなど、列の追加ボタンをクリックして列の詳細を追加します。一次キーとして1つ以上の列を選択します。 [保存]ボタンをクリックして、テーブルと列を作成します。

Oracleデータベースを作成するのは簡単ではありません。根本的なメカニズムを理解する必要があります。 1.データベースとOracle DBMSの概念を理解する必要があります。 2。SID、CDB(コンテナデータベース)、PDB(プラグ可能なデータベース)などのコアコンセプトをマスターします。 3。SQL*Plusを使用してCDBを作成し、PDBを作成するには、サイズ、データファイルの数、パスなどのパラメーターを指定する必要があります。 4.高度なアプリケーションは、文字セット、メモリ、その他のパラメーターを調整し、パフォーマンスチューニングを実行する必要があります。 5.ディスクスペース、アクセス許可、パラメーター設定に注意し、データベースのパフォーマンスを継続的に監視および最適化します。 それを巧みに習得することによってのみ、継続的な練習が必要であることは、Oracleデータベースの作成と管理を本当に理解できます。

Oracleデータベースを作成するには、一般的な方法はDBCAグラフィカルツールを使用することです。手順は次のとおりです。1。DBCAツールを使用してDBNAMEを設定してデータベース名を指定します。 2. SyspasswordとSystemPassWordを強力なパスワードに設定します。 3.文字セットとNationalCharactersetをAL32UTF8に設定します。 4.実際のニーズに応じて調整するようにMemorySizeとTableSpacesizeを設定します。 5. logfileパスを指定します。 高度な方法は、SQLコマンドを使用して手動で作成されますが、より複雑でエラーが発生しやすいです。 パスワードの強度、キャラクターセットの選択、表空間サイズ、メモリに注意してください

Oracle SQLステートメントのコアは、さまざまな条項の柔軟なアプリケーションと同様に、選択、挿入、更新、削除です。インデックスの最適化など、ステートメントの背後にある実行メカニズムを理解することが重要です。高度な使用法には、サブクエリ、接続クエリ、分析関数、およびPL/SQLが含まれます。一般的なエラーには、構文エラー、パフォーマンスの問題、およびデータの一貫性の問題が含まれます。パフォーマンス最適化のベストプラクティスには、適切なインデックスの使用、Select *の回避、条項の最適化、およびバインドされた変数の使用が含まれます。 Oracle SQLの習得には、コードライティング、デバッグ、思考、基礎となるメカニズムの理解など、練習が必要です。

MySQLのフィールド操作ガイド:フィールドを追加、変更、削除します。フィールドを追加:table table_nameを変更するcolumn_name data_type [not null] [default default_value] [プライマリキー] [auto_increment]フィールドの変更:column_name data_typeを変更するcolumn_name data_type [not null] [default default_value] [プライマリキー]

ネストされたクエリは、1つのクエリに別のクエリを含める方法です。これらは主に、複雑な条件を満たし、複数のテーブルを関連付け、要約値または統計情報を計算するデータを取得するために使用されます。例には、平均賃金を超える従業員を見つけること、特定のカテゴリの注文を見つけること、各製品の総注文量の計算が含まれます。ネストされたクエリを書くときは、サブ征服を書き、結果を外側のクエリ(エイリアスまたは条項として参照)に書き込み、クエリパフォーマンスを最適化する必要があります(インデックスを使用)。

Oracleデータベースの整合性の制約により、以下を含むデータの精度を確保できます。NULL:NULL値は禁止されています。一意:単一のヌル値を許可する一意性を保証します。一次キー:一次キーの制約、一意を強化し、ヌル値を禁止します。外部キー:テーブル間の関係を維持する、外部キーはプライマリテーブルのプライマリキーを参照します。チェック:条件に応じて列の値を制限します。

Oracleは、世界最大のデータベース管理システム(DBMS)ソフトウェア会社です。その主な製品には、次の機能が含まれます。リレーショナルデータベース管理システム(Oracle Database)開発ツール(Oracle Apex、Oracle Visual Builder)ミドルウェア(Oracle Weblogic Server、Oracle SOA Suite)Cloud Service(Oracle Cloud Infrastructure)Cloud ServiceおよびBusiness Intelligence(Oracle Analytics Cloud、Oracle Essbase)Blockchain(Oracle Blockchain Pla
