MySQL的优化方法总结_MySQL
bitsCN.com
数据库优化是一项很复杂的工作,因为这最终需要对系统优化的很好理解才行。尽管对系统或应用系统的了解不多的情况下优化效果还不错,但是如果想优化的效果更好,那么就需要对它了解更多才行。
1、优化概述
让系统运行得快得最重要因素是数据库基本的设计。并且还必须清楚您的系统要用来做什么,以及存在的瓶颈。
最常见的系统瓶颈有以下几种:
磁盘搜索。它慢慢地在磁盘中搜索数据块。对现代磁盘来说,平时的搜索时间基本上小于10毫秒,因此理论上每秒钟可以做100次磁盘搜索。这个时间对于全新的新磁盘来说提高的不多,并且对于只有一个表的情况也是如此。加快搜索时间的方法是将数据分开存放到多个磁盘中。
磁盘读/写。当磁盘在正确的位置上时,就需要读取数据。对现代磁盘来说,磁盘吞吐量至少是10-20MB/秒。这比磁盘搜索的优化更容易,因为可以从多个媒介中并行地读取数据。
CPU周期。数据存储在主内存中(或者它已经在主内存中了),这就需要处理这些数据以得到想要的结果。
内存带宽。当CPU要将更多的数据存放在CPU缓存中时,主内存的带宽就是瓶颈了。在大多数系统中,这不是常见的瓶颈,不过也是要注意的一个因素。
1.1 MySQL 设计的局限性
当使用MyISAM存储引擎时,MySQL会使用一个快速数据表锁以允许同时多个读取和一个写入。这种存储引擎的最大问题是发生在一个单一的表上同时做稳定的更新操作及慢速查询。如果这种情况在某个表中存在,可以使用另一种表类型。
MySQL可以同时在事务及非事务表下工作。为了能够平滑的使用非事务表(发生错误时不能回滚),有以下几条规则:
所有的字段都有默认值
如果字段中插入了一个"错误"的值,比如在数字类型字段中插入过大数值,那么MySQL会将该字段值置为"最可能的值"而不是给出一个错误。数字类型的值是0,最小或者最大的可能值。字符串类型,不是空字符串就是字段所能存储的最大长度。
所有的计算表达式都会返回一个值而报告条件错误,例如 1/0 返回 NULL。
这些规则隐含的意思是,不能使用MySQL来检查字段内容。相反地,必须在存储到数据库前在应用程序中来检查。
1.2 应用设计的可移植性
由于各种不同的数据库实现了各自的SQL标准,这就需要我们尽量使用可移植的SQL应用。查询和插入操作很容易就能做到可移植,不过由于更多的约束条件的要求就越发困难。想要让一个应用在各种数据库系统上快速运行,就变得更困难了。
为了能让一个复杂的应用做到可移植,就要先看这个应用运行于哪种数据库系统之上,然后看这些数据库系统都支持哪些特性。每个数据库系统都有某些不足。也就是说,由于设计上的一些妥协,导致了性能上的差异。
可以用MySQL的 crash-me 程序来看选定的数据库服务器上可以使用的函数,类型,限制等。crash-me 不会检查各种可能存在的特性,不过这仍然是合乎情理的理解,大约做了450次测试。一个crash-me 的信息类型的例子就是,它会告诉您如果想使用Informix 或 DB2的话,就不能使字段名长度超过18个字符。
crash-me 程序和MySQL基准使每个准数据库都实现了的。可以通过阅读这些基准程序是怎么写的,自己就大概有怎样做才能让程序独立于各种数据库这方面的想法了。这些程序可以在MySQL源代码的 `sql-bench' 目录下找到。他们大部分都是用Perl写的,并且使用DBI接口。由于它提供了独立于数据库的各种访问方式,因此用DBI来解决各种移植性的问题。
如果您想努力做到独立于数据库,这就需要对各种SQL服务器的瓶颈都有一些很好的想法。例如,MySQL对于 MyISAM 类型的表在检索以及更新记录时非常快,但是在有并发的慢速读取及写入记录时却有一定的问题。作为Oracle来说,它在访问刚刚被更新的记录时有很大的问题(直到结果被刷新到磁盘中)。事务数据库一般地在从日志表中生成摘要表这方面的表现不怎么好,因为在这种情况下,行记录锁几乎没用。
为了能让应用程序真正的做到独立于数据库,就必须把操作数据的接口定义的简单且可扩展。由于C++在很多系统上都可以使用,因此使用C++作为数据库的基类结果很合适。
如果使用了某些数据库独有的特定功能(比如 REPLACE 语句就只在MySQL中独有),这就需要通过编写替代方法来在其他数据库中实现这个功能。尽管这些替代方法可能会比较慢,但是它能让其他数据库实现同样的功能。
在MySQL中,可以在查询语句中使用 /*! */ 语法来增加MySQL特有的关键字。然而在很多其他数据库中,/**/ 却被当成了注释(并且被忽略)。
如果有时候更高的性能比数据结果的精确更重要,就像在一些Web应用中那样,这可以使用一个应用层来缓存结果,这可能会有更高的性能。通过让旧数据在一定时间后过期,来合理的更新缓存。这是处理负载高峰期时的一种方法,这种情况下,可以通过加大缓存容量和过期时间直到负载趋于正常。
这种情况下,建表信息中就要包含了初始化缓存的容量以及正常刷新数据表的频率。一个实现应用层缓存的可选方案是使用MySQL的查询缓存(query cache)。启用查询缓存后,数据库就会根据一些详情来决定哪些结果可以被重用。它大大简化了应用程序。
1.3 我们都用MySQL来做什么
在MySQL最开始的开发过程中,MySQL本来是要准备给大客户用的,他们是瑞典的2个最大的零售商,他们用于货物存储数据管理。
我们每周从所有的商店中得到交易利润累计结果,以此给商店的老板提供有用的信息,帮助他们分析如果更好的打广告以影响他们的客户。
数据量相当的大(每个月的交易累计结果大概有7百万),而且还需要显示4-10年间的数据。我们每周都得到客户的需求,他们要求能‘瞬间’地得到数据的最新报表。
我们把每个月的全部信息存储在一个压缩的‘交易’表中以解决这个问题。我们有一些简单的宏指令集,它们能根据不同的标准从存储的‘交易’表中根据字段分组(产品组、客户id、商店等等)取得结果。我们用一个小Perl脚本动态的生成Web页面形式的报表。这个脚本解析Web页面,执行SQL语句,并且插入结果。我们还可以用PHP或者mod_perl来做这个工作,不过当时还没有这2个工具。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









Hibernate クエリのパフォーマンスを最適化するためのヒントには、遅延読み込みを使用してコレクションと関連オブジェクトの読み込みを延期すること、バッチ処理を使用して更新、削除、または挿入操作を組み合わせて、HQL 外部接続を使用して頻繁にクエリされるオブジェクトをメモリに保存することなどがあります。エンティティとその関連エンティティを取得し、SELECTN+1 クエリ モードを回避するためにクエリ パラメータを最適化し、ブロック内の大量のデータを取得するためにインデックスを使用します。

データベースの最適化によってPython Webサイトのアクセス速度を向上させるにはどうすればよいですか?概要 Python Web サイトを構築する場合、データベースは重要なコンポーネントです。データベースのアクセス速度が遅いと、Web サイトのパフォーマンスやユーザー エクスペリエンスに直接影響します。この記事では、データベースを最適化して Python Web サイトのアクセス速度を向上させるいくつかの方法とサンプル コードについて説明します。はじめに ほとんどの Python Web サイトにとって、データベースはデータの保存と取得の重要な部分です。最適化されていない場合、データベースがパフォーマンスのボトルネックになる可能性があります。本

SpringBoot は、使いやすさと迅速な開発で知られる人気のある Java フレームワークです。ただし、アプリケーションの複雑さが増すにつれて、パフォーマンスの問題がボトルネックになる可能性があります。 SpringBoot アプリケーションを風のように速く作成できるように、この記事では、パフォーマンスを最適化するための実践的なヒントをいくつか紹介します。起動時間の最適化 アプリケーションの起動時間は、ユーザー エクスペリエンスの重要な要素の 1 つです。 SpringBoot には、キャッシュの使用、ログ出力の削減、クラスパス スキャンの最適化など、起動時間を最適化するいくつかの方法が用意されています。これを行うには、application.properties ファイルで spring.main.lazy-initialization を設定します。

MySQL データベースでは、インデックス作成はパフォーマンスを最適化する非常に重要な手段です。テーブル内のデータ量が増加すると、不適切なインデックスによりクエリが遅くなったり、データベースがクラッシュしたりする可能性があります。データベースのパフォーマンスを向上させるには、テーブル構造とクエリ ステートメントを設計するときにインデックスを合理的に使用する必要があります。複合インデックスは、複数のフィールドをインデックスとして結合することでクエリ効率を向上させる、より高度なインデックス作成テクノロジです。この記事では、複合インデックスを使用して MySQL のパフォーマンスを向上させる方法について詳しく説明します。複合インデックス複合とは

1. セキュリティ アノテーションの使用が多すぎることを避けるためのコードの最適化: コントローラーとサービスでは、@PreAuthorize や @PostAuthorize などのアノテーションの使用を減らすようにしてください。これらのアノテーションにより、コードの実行時間が増加します。クエリ ステートメントの最適化: springDataJPA を使用する場合、クエリ ステートメントを最適化するとデータベースのクエリ時間が短縮され、システムのパフォーマンスが向上します。セキュリティ情報のキャッシュ: 一般的に使用される一部のセキュリティ情報をキャッシュすると、データベース アクセスの数が減り、システムの応答速度が向上します。 2. データベースの最適化にインデックスを使用する: 頻繁にクエリが実行されるテーブルにインデックスを作成すると、データベースのクエリ速度が大幅に向上します。ログと一時テーブルを定期的にクリーンアップする: ログと一時テーブルを定期的にクリーンアップします。

技術的な観点から見ると、なぜ Oracle が MySQL に勝つことができるのでしょうか?近年、データベース管理システム (DBMS) はデータの保存と処理において重要な役割を果たしています。 Oracle と MySQL は、2 つの人気のある DBMS であり、常に大きな注目を集めています。ただし、技術的な観点から見ると、Oracle はいくつかの点で MySQL よりも強力であるため、Oracle は MySQL に勝つことができます。まず、Oracle は大規模なデータの処理に優れています。オラクル

コンピューター技術の継続的な発展とデータ規模の継続的な増大に伴い、データベースは重要なテクノロジーとなっています。ただし、Linux システムでデータベースを使用するときによく発生する問題がいくつかあります。この記事では、Linux システムでのデータベースの一般的な問題とその解決策をいくつか紹介します。データベース接続の問題 データベースを使用する場合、データベースの設定エラーやアクセス権の不足により、接続失敗や接続タイムアウトなどの問題が発生することがあります。解決策: データベース構成ファイルをチェックして、

カスタム WordPress プラグインのデータベース クエリを最適化する方法 概要: WordPress を使用してカスタム プラグインを開発する開発者にとって、データベース クエリを最適化する方法を理解することは非常に重要です。この記事では、開発者がカスタム プラグインのパフォーマンスを向上させるのに役立ついくつかの最適化テクニックを紹介します。はじめに: WordPress サイトが成長し、トラフィックが増加するにつれて、データベース クエリのパフォーマンスがますます重要になります。データベース クエリを最適化すると、Web サイトの速度と応答時間が大幅に向上し、より良いユーザー エクスペリエンスが提供されます。この記事
