ホームページ > テクノロジー周辺機器 > AI > 忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。

忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。

WBOY
リリース: 2024-03-20 10:13:09
転載
622 人が閲覧しました
忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。
編集者 | XXX

光多重化では、チャネル間の直交性が重要な役割を果たします。この直交性により、異なるチャネル間の信号が互いに干渉しないことが保証され、効率的なデータ送信が可能になります。光多重化システムは、複数のチャネルのデータを同時に送信できるため、光ファイバーの利用率が効果的に向上します。しかし、このようなシステムでも多重化容量には必然的に上限が課せられる。

ここでは、広東理工大学教育部の共感覚融合フォトニクス技術重点研究室が、ディープ ニューラル ネットワークに基づいたマルチモード ファイバー (MMF) 上の非直交光多重化を開発しました。 、スペックル ライト フィールド検索ネットワーク (SLRnet) と呼ばれるこのネットワークは、情報エンコードを含む複数の非直交入力ライト フィールドとそれに対応する単一強度出力の間の複雑なマッピング関係を学習できます。

SLRnet は、原理検証実験を通じて、MMF 上の非直交光多重化の不適切な問題を解決することに成功しました。シングルショットのスペックル出力を利用して、同じ偏光、波長、空間位置を介した複数の非直交入力信号を 98% の忠実度で明確に取得できます。この研究は、非直交チャネルを利用した大容量光多重化の実現への道を開くものであり、この目標に向けた重要な一歩となります。

この研究は、光学およびフォトニクス分野における潜在的な応用を促進し、情報科学や技術などのより広範な分野の探求に新たな洞察を提供します。

関連研究は「深層学習によって強化された非直交光多重化」というタイトルで、2024 年 2 月 21 日に「Nature Communications」に掲載されました。

忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。

論文リンク: https://www.nature.com/articles/s41467-024-45845-4

光多重化の問題

多重化は光通信の基礎であり、大規模な符号化情報伝送には多重化チャネル間の物理的直交性が前提条件となります。

複数の直交信号の逆多重化を考慮すると、送信行列法 (MMF など) は、散乱が強い媒体でもこの問題を解決できます。

最近、ディープラーニングは、光デバイスや計算光学のリバースデザインのために、光学およびフォトニクスの分野で広く使用されています。特に、ディープ ニューラル ネットワークは、複数の散乱媒体上での直交多重化のパフォーマンスを向上させるために使用されています。

ただし、これまで報告されている多重化シナリオはすべて、多重化チャネル間の物理的直交性に厳密に依存しています。深層学習の非線形モデリング機能を活用して、MMF 上で非直交光多重化を実現する試みはこれまで行われていません。

残念ながら、シングルモードファイバーであっても、同じ偏波または波長を介した非直交チャネルの多重化は、効率的な逆多重化方法やデジタル信号の欠如により、依然として非常に困難です。処理に過度の負担がかかります。したがって、非直交入力チャネルでエンコードされた情報をデコードする新しい方法を開発することは、最終的な光多重化にとって重要です。

ディープ ニューラル ネットワークに基づく MMF 上の非直交光多重化

ここでは、研究者らは、SLRnet のサポートにより、MMF を介して予備的な非直交光多重化が実現できることを実証しています。

概念実証のデモンストレーションとして、非直交入力チャネルを使用して、MMF を介した情報の多重送信を実現できます。これには、一般的な自然風景の画像、無関係なランダム バイナリ データ、および環境に属さない画像が含まれます。同じ種類のトレーニングデータセットを使用することにより、光情報の非直交多重伝送を実現することが有利となる。

非直交入力チャネルと出力間の複雑な関係を確立するデータ駆動型手法を通じて、トレーニングされたディープ ニューラル ネットワーク は、車線の非直交エンコード情報を取得できます。同じ偏波、波長、入力空間領域を共有する非直交多重化チャネルであっても、効率的にデコードできます。

忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。

図 1: MMF 上の非直交光多重化の概略図。 (出典: 論文)

ニューラル ネットワーク アーキテクチャ

深さニューラル ネットワーク単一スペックル出力から非直交光多重化を取得可能MMF信号。任意の偏波の組み合わせによって媒介される複数の振幅および位相エンコードされた情報は、MMF 内を伝播した後、SLRnet によって効率的に取得できます。

図 2a に示すように、同じ偏波、波長、入力空間領域を持つ非直交入力チャネルの典型的なシナリオでも、明示的にデコードできます。これは、図 2b にそのアーキテクチャが示されているディープ ニューラル ネットワーク を通じて実現されます。これは、MMF の独自の多重散乱プロセスに基づく Unet の変形です。これは、完全接続 (FC) 層と ResUnet で構成されます。

忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。

図 2: 深層学習による MMF 上の非直交光多重化。 (出典:論文)

実験結果

まずMMFの長さが1mの場合を考えます。図 3a は、SLRnet トレーニング中の偏光状態の任意の組み合わせによる 2 つの多重化ライト フィールド チャネルの検索忠実度の推移を示しています。全体として、振幅と位相の次元で 4 つのエンコード チャネルが存在しますが、偏光状態によっては非直交になる可能性があります。検索の忠実度は、ピアソンの相関係数 (PCC) によって測定されました。

忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。

図 3: SLRnet を使用した非直交多重化のパフォーマンス。 (出典: 論文)

図からわかるように、100 エポック後の同じ SLRnet トレーニング設定を使用して取得された PCC の進化は 0.97 を超えています。同時に、取得忠実度の進化は 12 の多重化シナリオで本質的に同じであり、任意の偏波の組み合わせに対する非直交多重化の優れた堅牢性を示しています。

さらに、図 3b は、異なる偏波の組み合わせを使用して、各振幅および位相多重化チャネルで個別に取得された忠実度を示しています。振幅と位相の次元における平均取得忠実度はほぼ同一 (~0.98) であり、複数の非直交入力チャネルでエンコードされた情報を逆多重化する SLRnet の能力を強調しています。

波面エンコードの検索情報の官能評価を行うために、4 つの偏光の組み合わせ (0° と 0°、0° と 10°、0° と 90°、0° と楕円) の典型的な分離結果を測定します。は次のとおりです。 図 4 に示します。

忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。

図 4: 1 m MMF での非直交多重化の結果。 (出典: 論文)

同じ偏光を使用して入力波面の振幅と位相に多重化された 4 つのグレースケール画像が、単一のスペックル出力を使用して効果的に逆多重化できることがわかります。異なる偏波の組み合わせで同様の忠実度で取得された他の結果は、符号化波面が MMF によってスクランブルされている場合でも、SLRnet が前例のない非直交入力チャネル多重化が可能であることを示しています。

忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。

図 5: 50 m MMF での非直交多重化の結果。 (出典: 論文)

より現実的なシナリオにおける SLRnet の優位性をさらに強固にするために、図 5 に示すように、50 m MMF で同じ偏波状態を使用した非直交光多重化の結果が提案されています。図 4 および 5 からわかるように、1 m MMF の逆多重化結果は 50 m の場合よりも優れています。これは、より長い MMF の散乱特性が環境の影響を受けやすいためです。ネットワーク構造を最適化することで、多重分離性能をさらに向上させることができます。研究によると、SLRnet は MMF で非直交チャネルを多重化する効果的な手段であることがわかっています。

忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。

図 6: 一般的な自然風景の画像と ImageNet データベースに属さない画像を 1 m MMF で非直交多重化した結果。 (出典: 論文)

最後に、さまざまな画像セットに対する SLRnet の多用途性を実証するために、研究では SLRnet が優れた一般化機能を備えていることが示されています。

現段階で提案されているMMFベースの非直交光多重化の概念は、通常均一な忠実性が要求される医療診断にそのまま使用することはできないが、無相関な2値デジタル情報を高精度に非直交多重化できることが示されている。 MMF による光情報の非直交多重伝送の実現は一歩前進であると考えられます。

この研究は、通信や情報処理に高スループットMMFを活用する道を開くだけでなく、光学やその他の分野における光多重化のパラダイムシフトをもたらし、自由度を大幅に高める可能性があります。光学系の自由度、容量。

以上が忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ソース:jiqizhixin.com
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
最新の問題
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート