


忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。

光多重化では、チャネル間の直交性が重要な役割を果たします。この直交性により、異なるチャネル間の信号が互いに干渉しないことが保証され、効率的なデータ送信が可能になります。光多重化システムは、複数のチャネルのデータを同時に送信できるため、光ファイバーの利用率が効果的に向上します。しかし、このようなシステムでも多重化容量には必然的に上限が課せられる。
ここでは、広東理工大学教育部の共感覚融合フォトニクス技術重点研究室が、ディープ ニューラル ネットワークに基づいたマルチモード ファイバー (MMF) 上の非直交光多重化を開発しました。 、スペックル ライト フィールド検索ネットワーク (SLRnet) と呼ばれるこのネットワークは、情報エンコードを含む複数の非直交入力ライト フィールドとそれに対応する単一強度出力の間の複雑なマッピング関係を学習できます。
SLRnet は、原理検証実験を通じて、MMF 上の非直交光多重化の不適切な問題を解決することに成功しました。シングルショットのスペックル出力を利用して、同じ偏光、波長、空間位置を介した複数の非直交入力信号を 98% の忠実度で明確に取得できます。この研究は、非直交チャネルを利用した大容量光多重化の実現への道を開くものであり、この目標に向けた重要な一歩となります。
この研究は、光学およびフォトニクス分野における潜在的な応用を促進し、情報科学や技術などのより広範な分野の探求に新たな洞察を提供します。
関連研究は「深層学習によって強化された非直交光多重化」というタイトルで、2024 年 2 月 21 日に「Nature Communications」に掲載されました。
光多重化の問題
多重化は光通信の基礎であり、大規模な符号化情報伝送には多重化チャネル間の物理的直交性が前提条件となります。
複数の直交信号の逆多重化を考慮すると、送信行列法 (MMF など) は、散乱が強い媒体でもこの問題を解決できます。
最近、ディープラーニングは、光デバイスや計算光学のリバースデザインのために、光学およびフォトニクスの分野で広く使用されています。特に、ディープ ニューラル ネットワークは、複数の散乱媒体上での直交多重化のパフォーマンスを向上させるために使用されています。
ただし、これまで報告されている多重化シナリオはすべて、多重化チャネル間の物理的直交性に厳密に依存しています。深層学習の非線形モデリング機能を活用して、MMF 上で非直交光多重化を実現する試みはこれまで行われていません。
残念ながら、シングルモードファイバーであっても、同じ偏波または波長を介した非直交チャネルの多重化は、効率的な逆多重化方法やデジタル信号の欠如により、依然として非常に困難です。処理に過度の負担がかかります。したがって、非直交入力チャネルでエンコードされた情報をデコードする新しい方法を開発することは、最終的な光多重化にとって重要です。
ディープ ニューラル ネットワークに基づく MMF 上の非直交光多重化
ここでは、研究者らは、SLRnet のサポートにより、MMF を介して予備的な非直交光多重化が実現できることを実証しています。
概念実証のデモンストレーションとして、非直交入力チャネルを使用して、MMF を介した情報の多重送信を実現できます。これには、一般的な自然風景の画像、無関係なランダム バイナリ データ、および環境に属さない画像が含まれます。同じ種類のトレーニングデータセットを使用することにより、光情報の非直交多重伝送を実現することが有利となる。
非直交入力チャネルと出力間の複雑な関係を確立するデータ駆動型手法を通じて、トレーニングされたディープ ニューラル ネットワーク は、車線の非直交エンコード情報を取得できます。同じ偏波、波長、入力空間領域を共有する非直交多重化チャネルであっても、効率的にデコードできます。
ニューラル ネットワーク アーキテクチャ
深さニューラル ネットワーク単一スペックル出力から非直交光多重化を取得可能MMF信号。任意の偏波の組み合わせによって媒介される複数の振幅および位相エンコードされた情報は、MMF 内を伝播した後、SLRnet によって効率的に取得できます。
図 2a に示すように、同じ偏波、波長、入力空間領域を持つ非直交入力チャネルの典型的なシナリオでも、明示的にデコードできます。これは、図 2b にそのアーキテクチャが示されているディープ ニューラル ネットワーク を通じて実現されます。これは、MMF の独自の多重散乱プロセスに基づく Unet の変形です。これは、完全接続 (FC) 層と ResUnet で構成されます。
実験結果
まずMMFの長さが1mの場合を考えます。図 3a は、SLRnet トレーニング中の偏光状態の任意の組み合わせによる 2 つの多重化ライト フィールド チャネルの検索忠実度の推移を示しています。全体として、振幅と位相の次元で 4 つのエンコード チャネルが存在しますが、偏光状態によっては非直交になる可能性があります。検索の忠実度は、ピアソンの相関係数 (PCC) によって測定されました。
図からわかるように、100 エポック後の同じ SLRnet トレーニング設定を使用して取得された PCC の進化は 0.97 を超えています。同時に、取得忠実度の進化は 12 の多重化シナリオで本質的に同じであり、任意の偏波の組み合わせに対する非直交多重化の優れた堅牢性を示しています。
さらに、図 3b は、異なる偏波の組み合わせを使用して、各振幅および位相多重化チャネルで個別に取得された忠実度を示しています。振幅と位相の次元における平均取得忠実度はほぼ同一 (~0.98) であり、複数の非直交入力チャネルでエンコードされた情報を逆多重化する SLRnet の能力を強調しています。
波面エンコードの検索情報の官能評価を行うために、4 つの偏光の組み合わせ (0° と 0°、0° と 10°、0° と 90°、0° と楕円) の典型的な分離結果を測定します。は次のとおりです。 図 4 に示します。
同じ偏光を使用して入力波面の振幅と位相に多重化された 4 つのグレースケール画像が、単一のスペックル出力を使用して効果的に逆多重化できることがわかります。異なる偏波の組み合わせで同様の忠実度で取得された他の結果は、符号化波面が MMF によってスクランブルされている場合でも、SLRnet が前例のない非直交入力チャネル多重化が可能であることを示しています。
より現実的なシナリオにおける SLRnet の優位性をさらに強固にするために、図 5 に示すように、50 m MMF で同じ偏波状態を使用した非直交光多重化の結果が提案されています。図 4 および 5 からわかるように、1 m MMF の逆多重化結果は 50 m の場合よりも優れています。これは、より長い MMF の散乱特性が環境の影響を受けやすいためです。ネットワーク構造を最適化することで、多重分離性能をさらに向上させることができます。研究によると、SLRnet は MMF で非直交チャネルを多重化する効果的な手段であることがわかっています。
最後に、さまざまな画像セットに対する SLRnet の多用途性を実証するために、研究では SLRnet が優れた一般化機能を備えていることが示されています。
現段階で提案されているMMFベースの非直交光多重化の概念は、通常均一な忠実性が要求される医療診断にそのまま使用することはできないが、無相関な2値デジタル情報を高精度に非直交多重化できることが示されている。 MMF による光情報の非直交多重伝送の実現は一歩前進であると考えられます。
この研究は、通信や情報処理に高スループットMMFを活用する道を開くだけでなく、光学やその他の分野における光多重化のパラダイムシフトをもたらし、自由度を大幅に高める可能性があります。光学系の自由度、容量。
以上が忠実度は ~98% と高いです。広州理工大学の「AI + 光学」研究が Nature サブジャーナルに掲載されました。深層学習により非直交光多重化が強化されます。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









以前に書きましたが、今日は、深層学習テクノロジーが複雑な環境におけるビジョンベースの SLAM (同時ローカリゼーションとマッピング) のパフォーマンスをどのように向上させることができるかについて説明します。ここでは、深部特徴抽出と深度マッチング手法を組み合わせることで、低照度条件、動的照明、テクスチャの弱い領域、激しいセックスなどの困難なシナリオでの適応を改善するように設計された多用途のハイブリッド ビジュアル SLAM システムを紹介します。当社のシステムは、拡張単眼、ステレオ、単眼慣性、ステレオ慣性構成を含む複数のモードをサポートしています。さらに、他の研究にインスピレーションを与えるために、ビジュアル SLAM と深層学習手法を組み合わせる方法も分析します。公開データセットと自己サンプリングデータに関する広範な実験を通じて、測位精度と追跡堅牢性の点で SL-SLAM の優位性を実証しました。

現代の製造において、正確な欠陥検出は製品の品質を確保するための鍵であるだけでなく、生産効率を向上させるための核心でもあります。ただし、既存の欠陥検出データセットには、実際のアプリケーションに必要な精度や意味論的な豊富さが欠けていることが多く、その結果、モデルが特定の欠陥カテゴリや位置を識別できなくなります。この問題を解決するために、広州香港科技大学と Simou Technology で構成されるトップの研究チームは、産業欠陥に関する詳細かつ意味的に豊富な大規模なアノテーションを提供する「DefectSpectrum」データセットを革新的に開発しました。表 1 に示すように、他の産業データ セットと比較して、「DefectSpectrum」データ セットは最も多くの欠陥注釈 (5438 個の欠陥サンプル) と最も詳細な欠陥分類 (125 個の欠陥カテゴリ) を提供します。

オープンな LLM コミュニティは百花繚乱の時代です Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1 などがご覧いただけます。優秀なパフォーマーモデル。しかし、GPT-4-Turboに代表される独自の大型モデルと比較すると、オープンモデルには依然として多くの分野で大きなギャップがあります。一般的なモデルに加えて、プログラミングと数学用の DeepSeek-Coder-V2 や視覚言語タスク用の InternVL など、主要な領域に特化したいくつかのオープン モデルが開発されています。

AI にとって、数学オリンピックはもはや問題ではありません。木曜日、Google DeepMind の人工知能は、AI を使用して今年の国際数学オリンピック IMO の本当の問題を解決するという偉業を達成し、金メダル獲得まであと一歩のところまで迫りました。先週終了したばかりの IMO コンテストでは、代数、組合せ論、幾何学、数論を含む 6 つの問題が出題されました。 Googleが提案したハイブリッドAIシステムは4問正解で28点を獲得し、銀メダルレベルに達した。今月初め、UCLA 終身教授のテレンス・タオ氏が、100 万ドルの賞金をかけて AI 数学オリンピック (AIMO Progress Award) を宣伝したばかりだったが、予想外なことに、AI の問題解決のレベルは 7 月以前にこのレベルまで向上していた。 IMO に関する質問を同時に行うのが最も難しいのは、最も歴史が長く、規模が最も大きく、最も否定的な IMO です。

編集者 | ScienceAI 限られた臨床データに基づいて、何百もの医療アルゴリズムが承認されています。科学者たちは、誰がツールをテストすべきか、そしてどのようにテストするのが最善かについて議論しています。デビン シン氏は、救急治療室で小児患者が治療を長時間待っている間に心停止に陥るのを目撃し、待ち時間を短縮するための AI の応用を模索するようになりました。 SickKids 緊急治療室からのトリアージ データを使用して、Singh 氏らは潜在的な診断を提供し、検査を推奨する一連の AI モデルを構築しました。ある研究では、これらのモデルにより医師の診察が 22.3% 短縮され、医療検査が必要な患者 1 人あたりの結果の処理が 3 時間近く高速化できることが示されました。ただし、研究における人工知能アルゴリズムの成功は、これを証明するだけです。

編集者 |KX 今日に至るまで、単純な金属から大きな膜タンパク質に至るまで、結晶学によって決定される構造の詳細と精度は、他のどの方法にも匹敵しません。しかし、最大の課題、いわゆる位相問題は、実験的に決定された振幅から位相情報を取得することのままです。デンマークのコペンハーゲン大学の研究者らは、結晶相の問題を解決するための PhAI と呼ばれる深層学習手法を開発しました。数百万の人工結晶構造とそれに対応する合成回折データを使用して訓練された深層学習ニューラル ネットワークは、正確な電子密度マップを生成できます。この研究では、この深層学習ベースの非経験的構造解法は、従来の非経験的計算法とは異なり、わずか 2 オングストロームの解像度で位相問題を解決できることが示されています。これは、原子解像度で利用可能なデータのわずか 10% ~ 20% に相当します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | 創薬の合理化における Ziluo AI の利用は爆発的に増加しています。新薬の開発に必要な特性を備えている可能性のある候補分子を数十億個スクリーニングします。材料の価格からエラーのリスクまで、考慮すべき変数が非常に多いため、たとえ科学者が AI を使用したとしても、最適な候補分子の合成コストを秤量することは簡単な作業ではありません。ここで、MIT の研究者は、最適な分子候補を自動的に特定する定量的意思決定アルゴリズム フレームワークである SPARROW を開発しました。これにより、合成コストを最小限に抑えながら、候補が望ましい特性を持つ可能性を最大限に高めることができます。このアルゴリズムは、これらの分子を合成するために必要な材料と実験手順も決定しました。 SPARROW では、複数の候補分子が入手可能な場合が多いため、分子のバッチを一度に合成するコストが考慮されます。
