CIO は AI によってもたらされると認識されているリスクにどのように対処できるか
一般の CEO は、AI の最大のリスクは機会を逃すことだと考えています。特に、競合他社が自社よりも早く AI ベースのビジネス機能を導入する可能性があるためです。
CIO として、実際の AI リスクを考慮し、潜在的なリスクも予測する必要があります。これを効果的に達成する方法を次に示します。
一般人が認識するリスク
1. AI は人間に影響を与えますか? 回答: これはリスクではなく、選択です。パーソナル コンピューター、次にインターネット、そしてスマートフォンはすべて、コンピューターで強化された人間にチャンスをもたらしました。 AI も同様のことが可能であり、ビジネス リーダーは AI の機能を使用して従業員を強化し、能力を強化することで、より強力で競争力のあるビジネスの構築に集中できます。
彼らは、AI を使用して、雇用している人間が現在実行しているタスクを自動化できる、あるいはそうする、また他の人が自動化するでしょう。
あるいは、両方を行う可能性が高く、絶対的な意味ではどちらも優れているわけではありませんが、異なるものになります。 CIO として、AI が従業員の追加または置き換えに使用されるかどうかにかかわらず、会社の意図を伝えるのを支援する必要があります。
スカイネットは、震えを引き起こす可能性のある AI の未来の 1 つですが、最もありそうもないシナリオとも考えられています。これは、殺人ロボットを作成することが不可能だからではなく、そのような破壊的な人工知能を作成して投資する十分な理由がないからです。
自然界では、他の生物を捕食することは、ほとんどの生物の生存ニーズの 1 つです。捕食者は生存と繁殖能力を確保するために獲物を追いかけます。しかし、人間以外の生き物は、ただ楽しむために他の種に害を及ぼすことはほとんどありません。このような動作はまれであり、通常は人間の介入または環境破壊によって引き起こされる異常な動作です。自然界は相互依存とバランスによって獲物と被食者の関係が保たれており、あらゆる生き物はこの生態系の中で重要な役割を果たしている 電気や半導体の分野に加え、我々は新たな発見と確固たる意志を持てるのか? AI 間のリソースをめぐる競争が激化し、殺人ロボットのシナリオが私たちが直面しなければならない問題になるかどうかはわかりません。
AI が電力や半導体の分野で私たちと競争すれば、殺人ロボットの構築にリソースを浪費する可能性が低くなるからです。
3. ディープフェイク、はい、ディープフェイクは問題であり、現実戦争の頂点として、問題は悪化するばかりです、ディープフェイク AI とディープフェイク検出 AI は、ますます高速に改善する必要があります。お互いのステータスを維持するために。
つまり、マルウェア対策が単独のウイルス対策から業界全体のサイバーセキュリティに進化したのと同じように、現実との戦いが激化するにつれて、ディープフェイク対策も同様の軌跡をたどることが予想されます。
CEO が認識する AI リスク
すぐに元 CEO になりたくない CEO は、何らかの形の「TOWS」分析 (脅威、機会) にかなりの時間と注意を費やすでしょう。 、弱点と強み)。
CIO としてのあなたの最も重要な責任の 1 つは、長い間、IT ベースの機能からビジネス チャンスに至るまで、点と点を結び付けてビジネス戦略の推進を支援することです (貴社がその機能を初めて活用する場合) )または脅威(競合他社が最初にそれらを悪用した場合)。
これは、現在の AI ブームが IT 業界を席巻する前のケースであり、それが「デジタル」のすべてであり、現在ではさらに当てはまります。
AI と組み合わせることで、CIO には新たな機能をビジネス全体に統合する方法という新たな責任が課せられます。
AI ベースの静かな脅威: 人間が作り出した弱点
あまり注目されていないが、懸念すべき別のタイプのリスクがあります。これは、「人為的に作られた人間の脆弱性」と呼ばれます。
ダニエル・カーネマンの考え方から始めましょう。速くても遅くても。カーネマンは本の中で、私たちの思考には 2 つの方法があると述べています。私たちが素早く考えるとき、私たちは脳の回路を使用して、一目で、遅滞なく、ほとんど努力せずに物事を理解することができます。素早く考えることは、「自分の直感を信頼する」ときに行うことでもあります。
私たちがゆっくり考えるとき、私たちは 17 × 53 を乗算する回路を使用していることになります。これはかなりの集中力、時間、頭脳を必要とするプロセスです。
AI に関して言えば、ゆっくり考えるのがエキスパート システムの機能であり、その点では昔ながらのコンピューター プログラミングが行うことですが、高速に考えるのが AI の最も魅力的なことであり、ニューラル ネットワークはそのためにあります。
現在の開発状況では、AI の素早い思考形態も、直感を信頼するのと同じ認知エラーを引き起こす傾向があります。例:
相関関係から因果関係を推測する: これを行うべきではないことは誰もが知っていますが、すべての証拠が並べられている場合、因果関係を推測することを止めるのは困難です。
偶然にも、今日 AI と呼ばれるものは主に、相関関係から因果関係を推測するニューラル ネットワークの機械学習で構成されています。
モデレーションに戻る: The Great British Baking Show を見ました。あるエピソードでスター ベイカー賞を受賞した人は、次のエピソードではパンの焼き方が悪くなる傾向にあることに気づくでしょう。これがスター ベイカーの呪いです。
ただ、これは呪いではなく、ただのランダムな動作です。どのパン屋のパフォーマンスも鐘の曲線に従います。1 週間以内にスター ベイカーに勝ったとき、彼らのパフォーマンスは鐘の形に達しています曲線の片尾、次に焼くときは、Star Baker Tail ではなく、平均的なパフォーマンスを発揮する可能性が最も高くなります。なぜなら、焼くたびに、勝利のテールではなく、平均的なパフォーマンスを発揮する可能性が最も高いからです。
機械学習 AI がこの誤謬の影響を受けないと期待する理由はありません。まったく逆に、ランダムなプロセス パフォーマンス データ ポイントに直面すると、悪い結果が発生するたびに AI が改善を予測することを期待する必要があります。
そして、因果関係は機能すると結論づけます。
「自分の仕事を見せる」のは禁止: そうですね、それはあなたの仕事ではなく、AI の仕事です。必要とされる、いわゆる「説明可能なAI」の開発に関する研究が活発に行われている。
あなたがビジネスチャンスの可能性を評価し、あなたに一連の行動を推奨するよう従業員を割り当てたとします。そして彼らはそうするでしょう、そしてあなたは「なぜそう思うのですか?」と尋ねるとします。有能な人なら誰でも従業員は楽しみにしています。この質問には答える準備ができています。
「説明可能な AI」がウィッシュリストではなく機能になるまで、AI は多くの企業が置き換えることを望んでいる労働者よりもこの分野での能力が低く、自分の考えを説明することができません。
無視すべきフレーズ
AI の文脈で、「コンピューターは . を決して知りません。」という主張を聞いたことがあるでしょう。
彼らは間違っています。これは、私がこのビジネスに携わり始めて以来、よく言われてきた主張であり、それ以来、どの x を選択しても、コンピュータは何でもできる、そしてそれは私たちよりもうまくできる、ということは明らかでした。 。
唯一の問題は、それが起こるまでどれくらいの時間待たなければならないかということです。
以上がCIO は AI によってもたらされると認識されているリスクにどのように対処できるかの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









vue.jsのオブジェクトに文字列を変換する場合、標準のjson文字列にはjson.parse()が推奨されます。非標準のJSON文字列の場合、文字列は正規表現を使用して処理し、フォーマットまたはデコードされたURLエンコードに従ってメソッドを削減できます。文字列形式に従って適切な方法を選択し、バグを避けるためにセキュリティとエンコードの問題に注意してください。

概要:Vue.js文字列配列をオブジェクト配列に変換するための次の方法があります。基本方法:定期的なフォーマットデータに合わせてマップ関数を使用します。高度なゲームプレイ:正規表現を使用すると、複雑な形式を処理できますが、慎重に記述して考慮する必要があります。パフォーマンスの最適化:大量のデータを考慮すると、非同期操作または効率的なデータ処理ライブラリを使用できます。ベストプラクティス:コードスタイルをクリアし、意味のある変数名とコメントを使用して、コードを簡潔に保ちます。

700万のレコードを効率的に処理し、地理空間技術を使用したインタラクティブマップを作成します。この記事では、LaravelとMySQLを使用して700万を超えるレコードを効率的に処理し、それらをインタラクティブなマップの視覚化に変換する方法について説明します。最初の課題プロジェクトの要件:MySQLデータベースに700万のレコードを使用して貴重な洞察を抽出します。多くの人は最初に言語をプログラミングすることを検討しますが、データベース自体を無視します。ニーズを満たすことができますか?データ移行または構造調整は必要ですか? MySQLはこのような大きなデータ負荷に耐えることができますか?予備分析:キーフィルターとプロパティを特定する必要があります。分析後、ソリューションに関連している属性はわずかであることがわかりました。フィルターの実現可能性を確認し、検索を最適化するためにいくつかの制限を設定しました。都市に基づくマップ検索

リモートシニアバックエンジニアの求人事業者:サークル場所:リモートオフィスジョブタイプ:フルタイム給与:$ 130,000- $ 140,000職務記述書サークルモバイルアプリケーションとパブリックAPI関連機能の研究開発に参加します。ソフトウェア開発ライフサイクル全体をカバーします。主な責任は、RubyonRailsに基づいて独立して開発作業を完了し、React/Redux/Relay Front-Endチームと協力しています。 Webアプリケーションのコア機能と改善を構築し、機能設計プロセス全体でデザイナーとリーダーシップと緊密に連携します。肯定的な開発プロセスを促進し、反復速度を優先します。 6年以上の複雑なWebアプリケーションバックエンドが必要です

VueとElement-UIカスケードドロップダウンボックスv-Modelバインディング共通ピットポイント:V-Modelは、文字列ではなく、カスケード選択ボックスの各レベルで選択した値を表す配列をバインドします。 SelectedOptionsの初期値は、nullまたは未定義ではなく、空の配列でなければなりません。データの動的読み込みには、非同期でデータの更新を処理するために非同期プログラミングスキルを使用する必要があります。膨大なデータセットの場合、仮想スクロールや怠zyな読み込みなどのパフォーマンス最適化手法を考慮する必要があります。

Vue axiosのタイムアウトを設定するために、Axiosインスタンスを作成してタイムアウトオプションを指定できます。グローバル設定:Vue.Prototype。$ axios = axios.create({Timeout:5000});単一のリクエストで:this。$ axios.get( '/api/users'、{timeout:10000})。

この記事では、MySQLデータベースの操作を紹介します。まず、MySQLWorkBenchやコマンドラインクライアントなど、MySQLクライアントをインストールする必要があります。 1. mysql-uroot-pコマンドを使用してサーバーに接続し、ルートアカウントパスワードでログインします。 2。CreatedAtaBaseを使用してデータベースを作成し、データベースを選択します。 3. createTableを使用してテーブルを作成し、フィールドとデータ型を定義します。 4. INSERTINTOを使用してデータを挿入し、データをクエリし、更新することでデータを更新し、削除してデータを削除します。これらの手順を習得することによってのみ、一般的な問題に対処することを学び、データベースのパフォーマンスを最適化することでMySQLを効率的に使用できます。

MySQLの起動が失敗する理由はたくさんあり、エラーログをチェックすることで診断できます。一般的な原因には、ポートの競合(ポート占有率をチェックして構成の変更)、許可の問題(ユーザー許可を実行するサービスを確認)、構成ファイルエラー(パラメーター設定のチェック)、データディレクトリの破損(テーブルスペースの復元)、INNODBテーブルスペースの問題(IBDATA1ファイルのチェック)、プラグインロード障害(エラーログのチェック)が含まれます。問題を解決するときは、エラーログに基づいてそれらを分析し、問題の根本原因を見つけ、問題を防ぐために定期的にデータをバックアップする習慣を開発する必要があります。
