目次
姿勢推定モデル (PEM)
実験結果
ホームページ テクノロジー周辺機器 AI ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく

ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく

Mar 25, 2024 pm 03:11 PM
ai 6d

オブジェクトの姿勢推定は、身体化された知能、巧みなロボット操作、拡張現実など、多くの実世界のアプリケーションで重要な役割を果たします。

この分野で注目すべき最初のタスクは インスタンス レベルの 6D 姿勢推定で、これにはモデルのトレーニングのためにターゲット オブジェクトに関する注釈付きデータが必要です。深度モデルはオブジェクト固有であり、新しいオブジェクトに転送することはできません。その後、研究の焦点は徐々に カテゴリレベルの 6D 姿勢推定 に移りました。これは目に見えないオブジェクトを処理するために使用されますが、そのオブジェクトが既知のオブジェクトに属している必要があります。興味のあるカテゴリー。

そして ゼロサンプル 6D 姿勢推定 は、より一般化されたタスク設定であり、任意のオブジェクトの CAD モデルを指定して、シーン内のターゲット オブジェクトを検出することを目的としています。そしてその6D姿勢を推定します。その重要性にもかかわらず、このゼロショット タスク設定は、物体検出と姿勢推定の両方において大きな課題に直面しています。

ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく

図 1. ゼロサンプル 6D オブジェクトの姿勢推定タスク

最近、すべてのモデルをセグメント化 SAM [1]は大きな注目を集めており、その優れたゼロサンプルセグメンテーション能力は目を引きます。 SAM は、ピクセル、バウンディング ボックス、テキスト、マスクなどのさまざまなキューを通じて高精度のセグメンテーションを実現します。これにより、ゼロサンプルの 6D オブジェクトの姿勢推定タスクに対する信頼性の高いサポートも提供され、その有望な可能性が実証されます。

そこで、Cross-Dimensional Intelligence、香港中文大学 (深セン)、華南理工大学の研究者は共同で、革新的なゼロサンプル 6D 物体姿勢推定フレームワーク SAM を提案しました。 -6D。この研究は CVPR 2024 に含まれています。

ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく


#

  • 論文リンク: https://arxiv.org/pdf/2311.15707.pdf
  • コードリンク: https://arxiv.org/pdf/2311.15707.pdf

://github.com/JiehongLin/SAM-6D

ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づくSAM-6D は、インスタンスのセグメンテーションとポーズを含む 2 つのステップを通じて、ゼロサンプルの 6D オブジェクトのポーズ推定を実現します。推定。したがって、任意のターゲット オブジェクトが与えられると、SAM-6D は 2 つの専用サブネットワーク、つまり

インスタンス セグメンテーション モデル (ISM) とポーズ推定モデル (PEM)

を利用して、RGB-D シーン イメージからターゲットを達成します。その中で、ISM は SAM を優れた出発点として使用し、慎重に設計されたオブジェクト マッチング スコアと組み合わせて、任意のオブジェクトのインスタンス セグメンテーションを実現します。PEM は、ローカル対ローカルの 2 段階の点セット マッチング プロセスを通じてオブジェクトの姿勢問題を解決します。 SAM-6Dの概要を図2に示します。

図 2. SAM-6D の概要
  • 一般的に、SAM-6D テクノロジの貢献は次のとおりです。
  • SAM-6D は、CAD を使用して RGB-D 画像から RGB-D 画像を生成できる革新的なゼロサンプル 6D 姿勢推定フレームワークです。あらゆるオブジェクトのモデルを作成し、ターゲット オブジェクトのインスタンス セグメンテーションと姿勢推定を実行し、BOP [2] の 7 つのコア データセットで優れたパフォーマンスを発揮します。
  • SAM-6D は、すべてのセグメンテーション モデルのゼロショット セグメンテーション機能を活用して、考えられるすべての候補オブジェクトを生成し、ターゲット オブジェクトに対応するオブジェクトを識別するための新しいオブジェクト マッチング スコアを設計します。候補者。

SAM-6D は、姿勢推定をローカル間の点集合のマッチング問題と見なし、シンプルだが効果的なバックグラウンド トークン設計を採用し、任意のオブジェクトに対する 2 次元アルゴリズムを提案します。ステージ点セット マッチング モデル。第 1 ステージでは粗い点セット マッチングを実装して初期オブジェクト ポーズを取得し、第 2 ステージでは新しい疎点セットから高密度点セットへの変換を使用して細かい点セット マッチングを実行し、ポーズをさらに最適化します。

インスタンス セグメンテーション モデル (ISM)

SAM-6D は、インスタンス セグメンテーション モデル (ISM) を使用して、任意のオブジェクトを検出してセグメント化します。マスク。

RGB イメージで表される乱雑なシーンを考慮して、ISM はセグメンテーション エブリシング モデル (SAM) のゼロショット転送機能を活用して、考えられるすべての候補を生成します。 ISM は候補オブジェクトごとにオブジェクト一致スコアを計算し、セマンティクス、外観、ジオメトリの観点からターゲット オブジェクトとどの程度一致しているかを推定します。最後に、一致しきい値を設定するだけで、ターゲット オブジェクトに一致するインスタンスを識別できます。 ############オブジェクト一致スコアは、3 つの一致項目の加重合計によって計算されます:######

セマンティック マッチング アイテム - ターゲット オブジェクトについて、ISM は複数の観点からオブジェクト テンプレートをレンダリングし、DINOv2 [3] の事前トレーニング済み ViT モデルを使用して候補オブジェクトとオブジェクト テンプレートを抽出します。そしてそれらの間の相関スコアを計算します。意味的一致スコアは、上位 K 個の最高スコアを平均することによって取得され、最も高い相関スコアに対応するオブジェクト テンプレートが最も一致するテンプレートとみなされます。

外観マッチング項目 ——最適にマッチングするテンプレートについては、ViT モデルを使用して画像ブロックの特徴を抽出し、それと画像のブロック特徴の間の相関を計算します。これにより、意味的に類似しているが外観が異なるオブジェクトを区別するために使用される外観一致スコアが得られます。

幾何学的一致 - さまざまなオブジェクトの形状やサイズの違いなどの要因を考慮して、ISM は幾何学的一致スコアも設計しました。最もよく一致するテンプレートと候補オブジェクトの点群に対応する回転の平均により、大まかなオブジェクトのポーズが得られ、このポーズを使用してオブジェクト CAD モデルを剛体変換および投影することにより、バウンディング ボックスを取得できます。境界ボックスと候補境界ボックスの間の交差対和集合 (IoU) 比を計算すると、幾何学的マッチング スコアを取得できます。

姿勢推定モデル (PEM)

ターゲット オブジェクトと一致する各候補オブジェクトに対して、SAM-6D は姿勢推定モデル (PEM) を利用します。 ) ) を使用して、オブジェクトの CAD モデルを基準にして 6D 姿勢を予測します。

セグメント化された候補オブジェクトとオブジェクト CAD モデルのサンプリング ポイント セットをそれぞれ ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく として表します。 N_m と N_o はそれらの点の数を表し、同時にこれら 2 つの点セットの特徴は ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づくゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく として表され、C はその数を表します機能のチャンネル数。 PEM の目的は、P_m から P_o までのローカル間対応を表す割り当て行列を取得することです。オクルージョンにより、P_o は P_m と部分的にのみ一致し、セグメンテーションの不正確さとセンサー ノイズにより、P_m は部分的にのみ一致します。 部分的 AND 一致ぽ。

2 つの点セット間で重複しない点を割り当てる問題を解決するために、ISM にはそれぞれのバックグラウンド トークンが装備されており、ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく および ## として記録されます。 ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく#、すると、特徴の類似性に基づいて、ローカル間の対応を効果的に確立できます。具体的には、まず注目行列を次のように計算できます。

ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく

次に、分布行列を取得できます

ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく

ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づくゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく はそれぞれ行と列に沿ったソフトマックス演算を表し、ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく は定数を表します。 ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく の各行の値 (最初の行を除く) は、点集合 P_m 内の各点 P_m と背景および P_o の中点との一致確率を表します。スコアを取得すると、P_m (背景を含む) に一致するポイントを見つけることができます。

計算結果が得られたら、すべてのマッチング ポイント ペア {(P_m,P_o)} とそのマッチング スコアを収集し、最終的に重み付き SVD オブジェクト姿勢を使用して計算できます。 ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく

図 3. SAM-6Dゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく

の姿勢推定モデル (PEM) の概略図

バックグラウンド トークンに基づく上記の戦略を使用して、PEM で 2 つの点セット マッチング ステージが設計されています。モデル構造は図 3 に示されています。特徴抽出、大まかな点セット マッチング、および詳細な点セットが含まれます。 3 つのモジュールに一致します。

ラフ点セット マッチング モジュールは、スパース対応を実装してオブジェクトの初期ポーズを計算し、このポーズを使用して候補オブジェクトの点セットを変換し、位置エンコード学習を実現します。

詳細点セット マッチング モジュールは、候補オブジェクトとターゲット オブジェクトのサンプリング点セットの位置エンコーディングを組み合わせて、第 1 段階で大まかな対応関係を注入し、さらに確立します。より正確なオブジェクトのポーズを取得するための密な対応関係。この段階で密な相互作用を効果的に学習するために、PEM は新しい疎から密への点集合変換器を導入します。これは、密な特徴の疎なバージョンで相互作用を実装し、線形変換器 [5] を利用して強化された疎な特徴を拡散に変換して密な特徴に戻します。特徴。

実験結果

SAM-6D の 2 つのサブモデルでは、インスタンス セグメンテーション モデル (ISM) が SAM とネットワークは再トレーニングされ、微調整されますが、姿勢推定モデル (PEM) は、MegaPose [4] によって提供される大規模な ShapeNet-Objects および Google-Scanned-Objects 合成データセットを使用してトレーニングされます。

ゼロサンプル機能を検証するために、SAM-6D は、LM-O、T-LESS、TUD-L、IC を含む BOP [2] の 7 つのコア データ セットでテストされました。 -BIN、ITODD、HB、YCB-V。表 1 と表 2 は、これら 7 つのデータセットに対するさまざまな方法によるインスタンスのセグメンテーションと姿勢推定の結果の比較をそれぞれ示しています。他の手法と比較して、SAM-6D は両方の手法で非常に優れたパフォーマンスを発揮し、その強力な汎化能力を十分に実証しています。

ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく

#表 1. BOP 7 つのコア データ セットに対するさまざまな方法のインスタンス セグメンテーション結果の比較

ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく

表 2. BOP の 7 つのコア データ セットに対するさまざまな方法の姿勢推定結果の比較

図 4 は、BOP における SAM-6D のパフォーマンスを示しています。 7 3 つのデータセットに対する検出セグメンテーションと 6D 姿勢推定の視覚化結果。(a) と (b) はそれぞれテスト RGB 画像と深度マップ、(c) は指定されたターゲット オブジェクト、(d) と (e)はそれぞれ検出セグメンテーションと 6D ポーズの可視化結果です。

ゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づく

図 4. BOP の 7 つのコア データセットに対する SAM-6D の視覚化結果。

SAM-6D の実装の詳細については、元の論文をお読みください。

以上がゼロサンプル 6D 物体姿勢推定フレームワーク SAM-6D、身体化されたインテリジェンスに一歩近づくの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

vue.jsのストリングをオブジェクトに変換するためにどのような方法が使用されますか? vue.jsのストリングをオブジェクトに変換するためにどのような方法が使用されますか? Apr 07, 2025 pm 09:39 PM

vue.jsのオブジェクトに文字列を変換する場合、標準のjson文字列にはjson.parse()が推奨されます。非標準のJSON文字列の場合、文字列は正規表現を使用して処理し、フォーマットまたはデコードされたURLエンコードに従ってメソッドを削減できます。文字列形式に従って適切な方法を選択し、バグを避けるためにセキュリティとエンコードの問題に注意してください。

vue.js文字列タイプの配列をオブジェクトの配列に変換する方法は? vue.js文字列タイプの配列をオブジェクトの配列に変換する方法は? Apr 07, 2025 pm 09:36 PM

概要:Vue.js文字列配列をオブジェクト配列に変換するための次の方法があります。基本方法:定期的なフォーマットデータに合わせてマップ関数を使用します。高度なゲームプレイ:正規表現を使用すると、複雑な形式を処理できますが、慎重に記述して考慮する必要があります。パフォーマンスの最適化:大量のデータを考慮すると、非同期操作または効率的なデータ処理ライブラリを使用できます。ベストプラクティス:コードスタイルをクリアし、意味のある変数名とコメントを使用して、コードを簡潔に保ちます。

インストール後にMySQLの使用方法 インストール後にMySQLの使用方法 Apr 08, 2025 am 11:48 AM

この記事では、MySQLデータベースの操作を紹介します。まず、MySQLWorkBenchやコマンドラインクライアントなど、MySQLクライアントをインストールする必要があります。 1. mysql-uroot-pコマンドを使用してサーバーに接続し、ルートアカウントパスワードでログインします。 2。CreatedAtaBaseを使用してデータベースを作成し、データベースを選択します。 3. createTableを使用してテーブルを作成し、フィールドとデータ型を定義します。 4. INSERTINTOを使用してデータを挿入し、データをクエリし、更新することでデータを更新し、削除してデータを削除します。これらの手順を習得することによってのみ、一般的な問題に対処することを学び、データベースのパフォーマンスを最適化することでMySQLを効率的に使用できます。

MySQLを解決する方法は開始できません MySQLを解決する方法は開始できません Apr 08, 2025 pm 02:21 PM

MySQLの起動が失敗する理由はたくさんあり、エラーログをチェックすることで診断できます。一般的な原因には、ポートの競合(ポート占有率をチェックして構成の変更)、許可の問題(ユーザー許可を実行するサービスを確認)、構成ファイルエラー(パラメーター設定のチェック)、データディレクトリの破損(テーブルスペースの復元)、INNODBテーブルスペースの問題(IBDATA1ファイルのチェック)、プラグインロード障害(エラーログのチェック)が含まれます。問題を解決するときは、エラーログに基づいてそれらを分析し、問題の根本原因を見つけ、問題を防ぐために定期的にデータをバックアップする習慣を開発する必要があります。

Vue Axiosのタイムアウトを設定する方法 Vue Axiosのタイムアウトを設定する方法 Apr 07, 2025 pm 10:03 PM

Vue axiosのタイムアウトを設定するために、Axiosインスタンスを作成してタイムアウトオプションを指定できます。グローバル設定:Vue.Prototype。$ axios = axios.create({Timeout:5000});単一のリクエストで:this。$ axios.get( '/api/users'、{timeout:10000})。

Laravelの地理空間:インタラクティブマップと大量のデータの最適化 Laravelの地理空間:インタラクティブマップと大量のデータの最適化 Apr 08, 2025 pm 12:24 PM

700万のレコードを効率的に処理し、地理空間技術を使用したインタラクティブマップを作成します。この記事では、LaravelとMySQLを使用して700万を超えるレコードを効率的に処理し、それらをインタラクティブなマップの視覚化に変換する方法について説明します。最初の課題プロジェクトの要件:MySQLデータベースに700万のレコードを使用して貴重な洞察を抽出します。多くの人は最初に言語をプログラミングすることを検討しますが、データベース自体を無視します。ニーズを満たすことができますか?データ移行または構造調​​整は必要ですか? MySQLはこのような大きなデータ負荷に耐えることができますか?予備分析:キーフィルターとプロパティを特定する必要があります。分析後、ソリューションに関連している属性はわずかであることがわかりました。フィルターの実現可能性を確認し、検索を最適化するためにいくつかの制限を設定しました。都市に基づくマップ検索

リモートシニアバックエンジニア(プラットフォーム)がサークルが必要です リモートシニアバックエンジニア(プラットフォーム)がサークルが必要です Apr 08, 2025 pm 12:27 PM

リモートシニアバックエンジニアの求人事業者:サークル場所:リモートオフィスジョブタイプ:フルタイム給与:$ 130,000- $ 140,000職務記述書サークルモバイルアプリケーションとパブリックAPI関連機能の研究開発に参加します。ソフトウェア開発ライフサイクル全体をカバーします。主な責任は、RubyonRailsに基づいて独立して開発作業を完了し、React/Redux/Relay Front-Endチームと協力しています。 Webアプリケーションのコア機能と改善を構築し、機能設計プロセス全体でデザイナーとリーダーシップと緊密に連携します。肯定的な開発プロセスを促進し、反復速度を優先します。 6年以上の複雑なWebアプリケーションバックエンドが必要です

MySQLインストール後にデータベースのパフォーマンスを最適化する方法 MySQLインストール後にデータベースのパフォーマンスを最適化する方法 Apr 08, 2025 am 11:36 AM

MySQLパフォーマンスの最適化は、インストール構成、インデックス作成、クエリの最適化、監視、チューニングの3つの側面から開始する必要があります。 1。インストール後、INNODB_BUFFER_POOL_SIZEパラメーターやclose query_cache_sizeなど、サーバーの構成に従ってmy.cnfファイルを調整する必要があります。 2。過度のインデックスを回避するための適切なインデックスを作成し、説明コマンドを使用して実行計画を分析するなど、クエリステートメントを最適化します。 3. MySQL独自の監視ツール(ShowProcessList、ShowStatus)を使用して、データベースの健康を監視し、定期的にデータベースをバックアップして整理します。これらの手順を継続的に最適化することによってのみ、MySQLデータベースのパフォーマンスを改善できます。

See all articles