安定性 AI オープンソース 3B コード生成モデル: 完成およびデバッグが可能
月曜日、Stability AI は、少量の事前トレーニング モデル Stable Code Instruct 3B をオープンソース化しました。
Stable Code Instruct 3B は、Stable Code 3B に基づく命令適応コーディング言語モデル (Code LM) です。自然言語プロンプトを提供することにより、モデルは、コード生成、数学的問題、ソフトウェア エンジニアリングに関連するその他のタスクなど、さまざまなタスクに適用できます。
Stability AI は、自社のモデルが 3B 規模で最先端のパフォーマンスを示し、ソフトウェア エンジニアリング関連のタスクにおいて、CodeLlama の 7B Instruct などの大規模モデルを上回っていると主張しています。 StarChatの15Bモデルと同等の性能を持っています。
- モデル: https://huggingface.co/stabilityai/stable- code-instruct-3b
- HuggingFace トライアル: https://huggingface.co/spaces/stabilityai/stable-code-instruct-3b
- 安定コード技術レポート: https://static1.squarespace.com/static/6213c340453c3f502425776e/t/6601c5713150412edcd56f8e/1711392114564/Stable_Code_TechReport_release.pdf
Stable Code Instruct 3B は、コード補完機能をアップグレードし、自然言語対話をサポートし、プログラミングおよびソフトウェア開発タスクの効率と直感性の向上を目指しています。実験結果によると、このモデルはさまざまなコーディング関連タスクで良好なパフォーマンスを示し、Codellama 7B Instruct や DeepSeek-Coder Instruct 1.3B などの競合モデルを上回っています。
メソッドの紹介
安定版コードは安定版 LM 3B に基づいています。 Stable Code は、LLaMA アーキテクチャに似た因果的な純粋なデコーダ変換器であり、LLaMA との主な違いは次のとおりです:
- 位置埋め込み、回転位置埋め込みが前面に適用されます。スループットを向上させるためにヘッド埋め込み次元の 25%、
- 正規化、学習されたバイアス項を使用した LayerNorm、
- 偏差、キー、クエリ、および値の投影におけるバイアス、安定したコードは、フィードフォワード ネットワークとマルチヘッドセルフ アテンション層からすべてのバイアス項を削除します。
#次の表は、トレーニング前コーパスのサンプリング重み、エポック、カテゴリ、その他の情報を示しています。データセット。
#Stack Overflow 2023 Developer Survey Report によると、安定していますCode Instruct 3B は、あらゆる種類の開発者にとって最も人気があり、影響力のある Python、JavaScript、Java、C、C、Go などの言語に焦点を当てています。これらの言語がトレーニングの焦点として選択されましたが、モデルは SQL、PHP、Rust などの他の広く採用されている言語でもトレーニングされました。
Stable Code Instruct 3B は、元々トレーニング セットに含まれていなかった言語 (たとえば、 Lua) テストのパフォーマンス。この熟練度は、基礎となるコーディング原則の理解と、コーディング タスクの固有の予測可能性を利用して、さまざまなプログラミング環境に概念を適応させる能力から得られるものと考えられます。
Stable Code Instruct 3B は、コード生成だけでなく、FIM (Fill in the Middle) タスク、データベース クエリ、コード変換、解釈、作成にも熟練しています。その命令は、微妙な命令を理解して実行できるように調整されており、数学的理解、論理的推論、ソフトウェア開発に関する複雑な技術的記述の処理など、単純なコード補完を超えた幅広いコーディング タスクを容易にします。
パフォーマンス評価
Codellama 7B Instruct や DeepSeek-Coder Instruct 1.3B などの主要なモデルと比較して、Stable Code Instruct 3B は次の点で優れたパフォーマンスを発揮します。一連のコーディングタスクで優れたパフォーマンスを実証しました。
研究チームは、Multi-PL ベンチマークでも 3 つのモデルを比較しました。パラメータが少ないにもかかわらず、Stable Code Instruct 3B はすべての言語で CodeLlama Instruct を大幅に上回りました。
以下の表 8 は、FIM タスクにおけるいくつかのモデルのパフォーマンスを示しています。
#安定した Code Instruct 3B のパラメータ サイズとハードウェア要件の低さにより、幅広いユーザーがアクセスでき、開発者が作業できるようになりますより効率的に。 Stable Code Instruct 3B は、Stability AI メンバーシップにより商用目的で利用できるようになりました。
以上が安定性 AI オープンソース 3B コード生成モデル: 完成およびデバッグが可能の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











node.js環境で403を返すサードパーティインターフェイスの問題を解決します。 node.jsを使用してサードパーティのインターフェイスを呼び出すと、403を返すインターフェイスから403のエラーが発生することがあります...

Laravelの電子メールの検証コードの送信の障害を処理する方法は、Laravelを使用することです...

システムが再起動した後、UnixSocketの権限を自動的に設定する方法。システムが再起動するたびに、UnixSocketの許可を変更するために次のコマンドを実行する必要があります:sudo ...

エラーの原因とソリューションPECLを使用してDocker環境に拡張機能をインストールする場合、Docker環境を使用するときに、いくつかの頭痛に遭遇します...

PHPの2次元配列のソートとランキングの実装の詳細な説明この記事では、PHP 2次元配列を並べ替えて、ソート結果に従って各サブアレイを使用する方法を詳細に説明します。

Laravelの電子メールの送信が失敗したときに戻りコードを取得する方法。 Laravelを使用してアプリケーションを開発する場合、検証コードを送信する必要がある状況に遭遇することがよくあります。そして実際には...

chatgptのコンテキストインターフェイスパラメーターを実装する方法は? OpenAIのインターフェイスを使用する場合、質疑応答機能を実装する機能は比較的簡単であり、公式ドキュメントは詳細も提供します...
