企业版MySQL数据库_MySQL
MySQL是开源方面的领军企业,同时也是全球成长最快的开源数据库开发商之一。作为全球最流行的开源数据库软件,MySQL企业版是公司的旗舰产品,包括经过产品测试的软件、主动监测工具和金牌支持服务。
许多全球最大、增长最快的企业和机构,包括行业领导者如雅虎、阿尔卡特-朗讯、谷歌、诺基亚、YouTube和Booking.com均采用MySQL产品,省时、省钱地创建大量网站、关键业务系统和打包软件。MySQL的开源数据库广泛部署于所有主要的操作系统,硬件用户、所涉地区、应用行业、应用类型极其广泛。MySQL的高性能开源数据库软件已经被下载和发行超过1亿套,并且正以每天下载5万套的数量增长。
MySQL开源数据库是LAMP架构(由Linux、Apache、MySQL和PHP/Perl组成的、通常被看作是互联网基础)中的“M”。来自MySQL的数据库,还有OpenSolaris和GlassFish,加上Sun的Java平台和NetBeans社区,将为转移应用到Web的广大客户开创一个强大的Web应用平台。
MySQL Enterprise Server软件是最可靠、最安全、更新版本的MySQL企业级服务器数据库,它能够高性价比地提供电子商务、联机事务处理(OLTP)、千兆规模的数据仓库应用等。它是一个安全的事务处理、适应ACID的数据库,能提供完整的提交、反转、崩溃恢复和行级锁定功能。MySQL数据库因其易用性、可扩展性和高性能等特点,成为全球最流行的开源数据库。
MySQL Enterprise Server 5.0提供了新的企业级产品功能,其中包括:
ACID事务处理:用以建立可靠安全的关键应用
存储过程:可以提高开发人员的工作效率
触发器:使用户能在数据库层面完成复杂的商业逻辑
视图: 确保敏感数据不被窃取
信息计划:为查询元数据提供快速的途径
分布式处理:通过它可以支持跨多个数据库的复杂事务处理
可插拔存储引擎架构:为数据库设计实施提供极大的灵活性
Archive存储引擎:提供了历史数据和审计数据的管理平台
Federated存储引擎:可以将多个不同服务器上的数据建立到一个统一的逻辑数据库
MySQL还提供了全套数据库驱动和绘图工具,用以帮助开发者和数据库管理员建立和管理其MySQL应用,如下:
(1)MySQL驱动
MySQL Native C Library
MySQL Drivers for ODBC, JDBC, .NET
Community Drivers for PHP, Perl, Python, Ruby, etc
MySQL Connector/MXJ for deployment as a JMX MBean
(2)MySQL图形工具
MySQL Workbench
MySQL Query Browser
MySQL Administrator
MySQL Migration Toolkit

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック

画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

テキスト注釈は、テキスト内の特定のコンテンツにラベルまたはタグを対応させる作業です。その主な目的は、特に人工知能の分野で、より深い分析と処理のためにテキストに追加情報を提供することです。テキスト注釈は、人工知能アプリケーションの教師あり機械学習タスクにとって非常に重要です。これは、自然言語テキスト情報をより正確に理解し、テキスト分類、感情分析、言語翻訳などのタスクのパフォーマンスを向上させるために AI モデルをトレーニングするために使用されます。テキスト アノテーションを通じて、AI モデルにテキスト内のエンティティを認識し、コンテキストを理解し、新しい同様のデータが出現したときに正確な予測を行うように教えることができます。この記事では主に、より優れたオープンソースのテキスト注釈ツールをいくつか推奨します。 1.LabelStudiohttps://github.com/Hu

顔の検出および認識テクノロジーは、すでに比較的成熟しており、広く使用されているテクノロジーです。現在、最も広く使用されているインターネット アプリケーション言語は JS ですが、Web フロントエンドでの顔検出と認識の実装には、バックエンドの顔認識と比較して利点と欠点があります。利点としては、ネットワーク インタラクションの削減とリアルタイム認識により、ユーザーの待ち時間が大幅に短縮され、ユーザー エクスペリエンスが向上することが挙げられます。欠点としては、モデル サイズによって制限されるため、精度も制限されることが挙げられます。 js を使用して Web 上に顔検出を実装するにはどうすればよいですか? Web 上で顔認識を実装するには、JavaScript、HTML、CSS、WebRTC など、関連するプログラミング言語とテクノロジに精通している必要があります。同時に、関連するコンピューター ビジョンと人工知能テクノロジーを習得する必要もあります。 Web 側の設計により、次の点に注意してください。

マルチモーダル文書理解機能のための新しい SOTA!アリババの mPLUG チームは、最新のオープンソース作品 mPLUG-DocOwl1.5 をリリースしました。これは、高解像度の画像テキスト認識、一般的な文書構造の理解、指示の遵守、外部知識の導入という 4 つの主要な課題に対処するための一連のソリューションを提案しています。さっそく、その効果を見てみましょう。複雑な構造のグラフをワンクリックで認識しMarkdown形式に変換:さまざまなスタイルのグラフが利用可能:より詳細な文字認識や位置決めも簡単に対応:文書理解の詳しい説明も可能:ご存知「文書理解」 「」は現在、大規模な言語モデルの実装にとって重要なシナリオです。市場には文書の読み取りを支援する多くの製品が存在します。その中には、主にテキスト認識に OCR システムを使用し、テキスト処理に LLM と連携する製品もあります。

最新の AIGC オープンソース プロジェクト、AnimagineXL3.1 をご紹介します。このプロジェクトは、アニメをテーマにしたテキストから画像へのモデルの最新版であり、より最適化された強力なアニメ画像生成エクスペリエンスをユーザーに提供することを目的としています。 AnimagineXL3.1 では、開発チームは、モデルのパフォーマンスと機能が新たな高みに達することを保証するために、いくつかの重要な側面の最適化に重点を置きました。まず、トレーニング データを拡張して、以前のバージョンのゲーム キャラクター データだけでなく、他の多くの有名なアニメ シリーズのデータもトレーニング セットに含めました。この動きによりモデルの知識ベースが充実し、さまざまなアニメのスタイルやキャラクターをより完全に理解できるようになります。 AnimagineXL3.1 では、特別なタグと美学の新しいセットが導入されています

FP8 以下の浮動小数点数値化精度は、もはや H100 の「特許」ではありません。 Lao Huang は誰もが INT8/INT4 を使用できるようにしたいと考え、Microsoft DeepSpeed チームは NVIDIA からの公式サポートなしで A100 上で FP6 の実行を開始しました。テスト結果は、A100 での新しい方式 TC-FPx の FP6 量子化が INT4 に近いか、場合によってはそれよりも高速であり、後者よりも精度が高いことを示しています。これに加えて、エンドツーエンドの大規模モデルのサポートもあり、オープンソース化され、DeepSpeed などの深層学習推論フレームワークに統合されています。この結果は、大規模モデルの高速化にも即座に影響します。このフレームワークでは、シングル カードを使用して Llama を実行すると、スループットはデュアル カードのスループットの 2.65 倍になります。 1つ

論文のアドレス: https://arxiv.org/abs/2307.09283 コードのアドレス: https://github.com/THU-MIG/RepViTRepViT は、モバイル ViT アーキテクチャで優れたパフォーマンスを発揮し、大きな利点を示します。次に、この研究の貢献を検討します。記事では、主にモデルがグローバル表現を学習できるようにするマルチヘッド セルフ アテンション モジュール (MSHA) のおかげで、軽量 ViT は一般的に視覚タスクにおいて軽量 CNN よりも優れたパフォーマンスを発揮すると述べられています。ただし、軽量 ViT と軽量 CNN のアーキテクチャの違いは十分に研究されていません。この研究では、著者らは軽量の ViT を効果的なシステムに統合しました。

最新の国内大規模オープンソース MoE モデルは、デビュー直後から人気を集めています。 DeepSeek-V2 のパフォーマンスは GPT-4 レベルに達しますが、オープンソースで商用利用は無料で、API 価格は GPT-4-Turbo のわずか 1% です。そのため、公開されるとすぐに大きな話題を呼びました。公開されているパフォーマンス指標から判断すると、DeepSeekV2 の包括的な中国語機能は多くのオープンソース モデルの機能を上回っています。同時に、GPT-4Turbo や Wenkuai 4.0 などのクローズド ソース モデルも第一段階にあります。総合的な英語力もLLaMA3-70Bと同じ第一段階にあり、同じくMoEであるMixtral8x22Bを上回っています。また、知識、数学、推論、プログラミングなどでも優れたパフォーマンスを示します。 128K コンテキストをサポートします。これをイメージしてください
