目次
自社のユースケースを理解する
データ ソースと品質が鍵です
データ保護とプライバシー
スケーラビリティと推論リソース
モデルの選択を検討する
モニタリングとロギング
その他の考慮事項
ホームページ テクノロジー周辺機器 AI 生成型 AI システムの導入により、エンタープライズ クラウド アーキテクチャが変革される可能性がある

生成型 AI システムの導入により、エンタープライズ クラウド アーキテクチャが変革される可能性がある

Apr 01, 2024 pm 05:34 PM
AI クラウドコンピューティング データアクセス 最適化の実践 機密データ データが失われた クラウドアーキテクチャ

生成型 AI システムの導入により、エンタープライズ クラウド アーキテクチャが変革される可能性がある

データの可用性とセキュリティから大規模な言語モデルと選択と監視に至るまで、企業が生成型人工知能を導入することは、クラウド アーキテクチャを再検討することを意味します。

したがって、多くの企業がクラウド アーキテクチャを再構築し、生成人工知能システムを開発しています。では、これらの企業はどのような変更を行う必要があるのでしょうか? 新しいベスト プラクティスは何ですか? 業界の専門家は、過去 20 年間、特に過去 2 年間、彼は企業がそのようなプラットフォームを構築するのを支援してきたと述べています。企業:

自社のユースケースを理解する

企業は、クラウド アーキテクチャにおける生成 AI の目的と目標を明確に定義する必要があります。誤ったフィードバックが見られる場合、それはビジネス システムで人工知能を生成することが何を意味するかを理解していないためです。企業は、コンテンツ生成、推奨システム、その他のアプリケーションなど、自社の目標が何であるかを理解する必要があります。

これは、企業の上級管理者が設定された目標について合意に達し、目標を達成する方法、そして最も重要なことに、成功を定義する方法を明確にする必要があることを意味します。これはプロダクション AI に特有のものではありません。そしてこれは、クラウドに構築されたすべての移行と新しいシステムの成功への一歩です。

企業がクラウド プラットフォームで開発したスマート プロジェクトの多くは、ビジネス ユース ケースをよく理解していないために失敗します。会社が開発した製品は素晴らしいですが、それは会社のビジネスに何の価値ももたらしません。このアプローチは機能しません。

データ ソースと品質が鍵です

効果的なインテリジェント モデルをトレーニングして推論するには、生成人工知能モデルのトレーニングと推論を特定するには、アクセス可能で高度なデータ ソースが必要な有効なデータ ソースが必要です。高品質で慎重に厳選されたデータ。企業は、クラウド コンピューティング ストレージ ソリューションの可用性と耐障害性を確保するために、クラウド コンピューティング ストレージ ソリューションの可用性と耐障害性も確保する必要があります。

生成機能システムは、データ指向システムともいえる、高度にインテリジェントなデータ中心システムです。データは、機能システムを駆動して結果を生み出す燃料です。ただし、データの品質は「ゴミが入ってもゴミが出てくる」状態のままです。

これを行うには、データ アクセシビリティをクラウド アーキテクチャの主要な推進要因として考慮することが役立ちます。企業は最も関連性の高いデータをトレーニング データとしてアクセスする必要があり、通常はデータを単一の物理エンティティに移行するのではなく、保存場所に保存します。そうしないと、データが冗長になり、信頼できる唯一の情報源がなくなってしまいます。 AI モデルにデータを供給する前に、データを前処理してクリーンアップする効率的なデータ管理パイプラインを検討してください。これにより、データの品質とモデルのパフォーマンスが保証されます。

生成機能を使用したクラウド アーキテクチャは 80% 成功しています。クラウド アーキテクトは、これらのシステムに高品質のデータを提供することよりも、機能を生成することに重点を置いているため、これは最も見落とされている要因です。実際、データがすべてです。

データ保護とプライバシー

データが重要であるのと同様に、そのセキュリティとプライバシーも重要です。生成 AI 処理により、一見無意味に見えるデータが機密情報を漏洩する可能性のあるデータに変換される可能性があります。

企業は、AI によって使用される機密データや AI によって生成される可能性のある新しいデータを保護するために、堅牢なデータ セキュリティ対策、暗号化、およびアクセス制御を実装する必要があります。企業は、関連するデータプライバシー規制を遵守する必要があります。これは、最後の手段として企業のアーキテクチャに何らかのセキュリティ システムをインストールするという意味ではなく、あらゆる段階でシステムにセキュリティを適用する必要があるということです。

スケーラビリティと推論リソース

企業は、さまざまなワークロードとデータ処理のニーズに対応するために、スケーラブルなクラウド リソースを計画する必要があります。ほとんどの企業は、自動スケーリングと負荷分散のソリューションを検討しています。私たちが目にするより深刻な間違いの 1 つは、拡張性は高いが非常に高価なシステムを構築することです。スケーラビリティとコストのバランスを取るのが最善ですが、これは可能ですが、優れたアーキテクチャとクラウド コストの最適化実践が必要です。

さらに、企業は推論リソースを検討する必要があります。クラウド コンピューティング業界のカンファレンスでは、多くのニュースがこのトピックを中心に展開されていることが注目されていますが、それには十分な理由があります。モデルのトレーニングと推論には、GPU または TPU を備えた適切なクラウド インスタンスを選択します。また、リソースの割り当てを最適化して、費用対効果を実現します。

モデルの選択を検討する

企業の特定のユースケースとニーズに基づいて、生成 AI アーキテクチャの例 (一般的な敵対的ネットワーク、トランスフォーマーなど) を選択します。モデルのトレーニングにクラウド サービス (AWSSageMaker など) を使用することを検討し、最適化されたソリューションを見つけてください。また、企業には多数の接続モデルがある可能性があり、これが標準になることを理解することも意味します。

企業は、企業のクラウド アーキテクチャ内のアプリケーションやサービスから AI モデルにアクセスできるようにするために、バージョン管理やコンテナ化などの堅牢なモデル展開戦略を実装する必要があります。

モニタリングとロギング

AI モデルのパフォーマンス、リソース使用率、潜在的な問題を追跡するためにモニタリングとロギング システムをセットアップすることはオプションではありません。クラウドで生成された人工知能を処理するための異常警告メカニズムと可観測性システムを確立します。

さらに、生成 AI はリソースを大量に消費する可能性があるため、クラウド リソースのコストを継続的に監視して最適化します。クラウド コスト管理ツールとプラクティスを使用するということは、クラウド コストの最適化によって導入のあらゆる側面を監視できるようになり、運用コストを最小限に抑え、アーキテクチャの効率を向上させることを意味します。ほとんどのアーキテクチャでは、チューニングと継続的な改善が必要です。

その他の考慮事項

高可用性を確保するにはフェイルオーバーと冗長性が必要であり、災害復旧計画により、システム障害が発生した場合のダウンタイムとデータ損失を最小限に抑えることができます。必要に応じて冗長性を実装します。さらに、クラウド インフラストラクチャ内の生成 AI システムのセキュリティを定期的に監査および評価します。脆弱性に対処し、コンプライアンスを維持します。

特に生成 AI システムがコンテンツを生成したり、ユーザーに影響を与える意思決定を行う場合には、人工知能の倫理的使用に関するガイドラインを確立することをお勧めします。さらに、偏見と公平性の問題にも対処する必要があります。人工知能と公平性を巡る訴訟が続いており、企業は自らの行動が正しいことを確認する必要がある。企業は、AI が生成したコンテンツがユーザーの期待を満たし、エンゲージメントを促進するために、ユーザー エクスペリエンスを継続的に評価する必要があります。

企業が生成 AI システムを使用しているかどうかに関係なく、クラウド アーキテクチャの他の側面は実質的に同じです。重要なのは、もっと重要なものがあることを認識し、クラウド アーキテクチャを改善し続けることです。

以上が生成型 AI システムの導入により、エンタープライズ クラウド アーキテクチャが変革される可能性があるの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

C言語データ構造:人工知能におけるデータ構造の重要な役割 C言語データ構造:人工知能におけるデータ構造の重要な役割 Apr 04, 2025 am 10:45 AM

C言語データ構造:人工知能の分野における人工知能におけるデータ構造の重要な役割の概要、データ構造は、大量のデータを処理するために重要です。データ構造は、データを整理および管理し、アルゴリズムを最適化し、プログラムの効率を改善するための効果的な方法を提供します。一般的に使用されるC言語で一般的に使用されるデータ構造には、次のものが含まれます。配列:同じタイプの連続して保存されたデータ項目のセット。構造:さまざまな種類のデータを一緒に整理し、名前を付けるデータ型。リンクリスト:データ項目がポインターによって接続される線形データ構造。スタック:最後のファーストアウト(LIFO)原理に続くデータ構造。キュー:ファーストインファーストアウト(FIFO)原則に続くデータ構造。実用的なケース:グラフ理論の隣接するテーブルは人工知能です

Intapp Walls APIを使用して、トランザクションチームのメンバーシップを処理します Intapp Walls APIを使用して、トランザクションチームのメンバーシップを処理します Apr 03, 2025 pm 10:54 PM

Intappwallsapi:倫理的壁と敏感なデータアクセスを効率的に管理するIntappwallsapiは、倫理的壁を管理し、機密データへのアクセスを安全に制御するための強力なツールです。開発者は、その強力な機能を使用して、トランザクションチーム、メンバーシップ管理、および機密保持要件の厳格なコンプライアンスの効率的なコラボレーションを実現できます。 Intappwallsapiは、SOAPプロトコルに基づいたWebサービスであり、Intappwallsアプリケーションと対話するためのプログラミングインターフェイスを提供し、標準のコンポーネントWebサービスとして展開されます。説明を簡素化するために、この記事のサンプルコードでは、エラーチェック、例外処理、ロギングが省略されます。例は参照のみを目的としており、最良のコーディングプラクティスではありません。この記事は2つに焦点を当てています

ベクトルpsを描画する方法 ベクトルpsを描画する方法 Apr 06, 2025 pm 10:00 PM

ベクトル図は、スケーラビリティ、明確さ、および小さなファイルサイズの利点を持つ数学的曲線を使用して作成された画像です。ベクトルグラフィックを描画するには、ベクトル編集ソフトウェアを使用して、形状を作成し、形状を組み合わせ、色の追加、テキスト、グループ化、レイヤーを組み合わせて画像を作成する必要があります。

MySQLを解決する方法は開始できません MySQLを解決する方法は開始できません Apr 08, 2025 pm 02:21 PM

MySQLの起動が失敗する理由はたくさんあり、エラーログをチェックすることで診断できます。一般的な原因には、ポートの競合(ポート占有率をチェックして構成の変更)、許可の問題(ユーザー許可を実行するサービスを確認)、構成ファイルエラー(パラメーター設定のチェック)、データディレクトリの破損(テーブルスペースの復元)、INNODBテーブルスペースの問題(IBDATA1ファイルのチェック)、プラグインロード障害(エラーログのチェック)が含まれます。問題を解決するときは、エラーログに基づいてそれらを分析し、問題の根本原因を見つけ、問題を防ぐために定期的にデータをバックアップする習慣を開発する必要があります。

特定のシステムバージョンでMySQLが報告したエラーのソリューション 特定のシステムバージョンでMySQLが報告したエラーのソリューション Apr 08, 2025 am 11:54 AM

MySQLのインストールエラーのソリューションは次のとおりです。1。システム環境を慎重に確認して、MySQL依存関係ライブラリの要件が満たされていることを確認します。異なるオペレーティングシステムとバージョンの要件は異なります。 2.エラーメッセージを慎重に読み取り、依存関係のインストールやSUDOコマンドの使用など、プロンプト(ライブラリファイルの欠落やアクセス許可など)に従って対応する測定値を取得します。 3.必要に応じて、ソースコードをインストールし、コンパイルログを慎重に確認してみてください。これには、一定量のLinuxの知識と経験が必要です。最終的に問題を解決する鍵は、システム環境とエラー情報を慎重に確認し、公式の文書を参照することです。

C言語(xとはどういう意味ですか? C言語(xとはどういう意味ですか? Apr 03, 2025 pm 04:30 PM

C言語では、(x)は、変数または式のタイプを変更し、エラーまたは警告を抑制し、特定のデータタイプの特定の表現を取得するために、1つの値を別のデータタイプに明示的に変換するために使用されるキャスト演算子を表します。

PSエクスポートPDFのファイルサイズを圧縮する方法 PSエクスポートPDFのファイルサイズを圧縮する方法 Apr 06, 2025 pm 05:18 PM

PSのエクスポート後に過度に大きいという問題に対処します:PSエクスポート設定を巧みに使用します。適切な「互換性」設定を選択して、画像圧縮率を最適化し、解像度の削減を避けます。サードパーティのPDF圧縮ツールの助けを借りて:圧縮比と画質に注意し、ニーズに合ったツールを選択し、ファイルのバックアップに注意してください。階層的なエクスポート、1つずつ最適化します:レイヤーごとにPSファイルレイヤーを別々のPDFにエクスポートし、それらをマージして、サイズと品質を細かく制御します。

MySQLインストール後にデータベースのパフォーマンスを最適化する方法 MySQLインストール後にデータベースのパフォーマンスを最適化する方法 Apr 08, 2025 am 11:36 AM

MySQLパフォーマンスの最適化は、インストール構成、インデックス作成、クエリの最適化、監視、チューニングの3つの側面から開始する必要があります。 1。インストール後、INNODB_BUFFER_POOL_SIZEパラメーターやclose query_cache_sizeなど、サーバーの構成に従ってmy.cnfファイルを調整する必要があります。 2。過度のインデックスを回避するための適切なインデックスを作成し、説明コマンドを使用して実行計画を分析するなど、クエリステートメントを最適化します。 3. MySQL独自の監視ツール(ShowProcessList、ShowStatus)を使用して、データベースの健康を監視し、定期的にデータベースをバックアップして整理します。これらの手順を継続的に最適化することによってのみ、MySQLデータベースのパフォーマンスを改善できます。

See all articles