SQL语言快速入门之三_MySQL
我们日常使用SQL语言的工作过程中,使用最多的还是从已经建立好的数据库中查询信息。下面,我们就来详细介绍一下如何使用SQL语言实现各种数据库查询操作。
SELECT…FROM
为方便讲解,我们在数据库中创建名为Store_Information的如下数据表。
Store_Information
Store_Name
Sales
Date
Los Angeles
$1500
Jan-10-2000
San Diego
$250
Jan-11-2000
Los Angeles
$300
Jan-12-2000
Boston
$700
Jan-12-2000
SQL语言中用于数据库查询的最简单的命令就是SELECT…FROM,语法格式为:
SELECT "column_name" FROM "table_name"
例如,如果我们希望查询Store_Information数据表中所有的商店名称时,可以使用如下命令:
SELECT store_name FROM Store_Information
查询结果显示为:
Store_Name
Los Angeles
San Diego
Los Angeles
Boston
如果用户希望一次查询多个字段,可以将所要查询的字段名称依次加入SELECT关键字之后,中间用“,”隔开即可。
DISTINCT
SELECT关键字支持用户查询数据表中指定字段的所有数据,但是这样有时就会不可避免的出现重复信息。如果用户希望只查询那些具有不同记录值的信息的话,可以使用SQL语言的DISTINCT关键字。语法格式如下:
SELECT DISTINCT "column_name"
FROM "table_name"
例如,我们可以使用以下命令查询Store_Information数据表具有不同记录值的所有记录。
SELECT DISTINCT Store_Name FROM Store_Information
查询结果如下:
Store_Name
Los Angeles
San Diego
Boston
WHERE
除了选择具有不同记录值的记录之外,有时我们可能还会需要根据某些条件对数据库中的数据进行查询。例如,我们可能需要查询Store_Information数据表中销售额超过1000美圆的商店。为此,我们可以使用SQL语言的WHERE关键字设定查询条件。语法格式如下:
SELECT "column_name"
FROM "table_name"
WHERE "condition"
由此,我们可以使用如下命令查询销售额超过1000美圆的商店信息:
SELECT store_name FROM Store_Information WHERE Sales > 1000
查询结果显示为:
store_name
Los Angeles
运算函数
现在,我们已经了解到在使用SQL语言进行数据库查询操作时可以通过对数值的判断设定灵活的查询条件。为了增强对运算的支持能力,SQL提供了众多实用的运算函数供广大用户使用。例如,我们可以直接在SQL命令中调用SUM或AVG这两个分别用于计算总数和平均数的函数。语法格式如下:
SELECT "function type"("column_name")
FROM "table_name"
如果我们希望查询Store_Information数据表中所有商店的总销售额的话,可以使用如下命令:
SELECT SUM(Sales) FROM Store_Information
查询结果显示为:
SUM(Sales)
$2750
COUNT
除了SUM和AVG函数之外,COUNT函数是SQL语言中另一个较为常用的运算函数。COUNT函数可以用来计算数据表中指定字段所包含的记录数目。语法格式为:
SELECT COUNT("column_name")
FROM "table_name"
例如,如果我们希望查询Store_Information数据表中的有关商店的记录条数时,可以使用如下命令:
SELECT COUNT(store_name)
FROM Store_Information
查询结果显示为:
Count(store_name)
4
COUNT函数可以和DISTINCT关键字一起使用从而可以查询数据表中指定字段中所有具有不同记录值的记录数目。例如,如果我们希望查询Store_Information数据表中不同商店的数目时,可以使用如下命令:
SELECT COUNT(DISTINCT store_name)
FROM Store_Information
查询结果显示为:
Count(DISTINCT store_name)
3
GROUP BY
下面我们来进一步看一下SQL语言中的集合函数。上文中,我们曾使用SUM函数计算所有商店的销售总额,如果我们希望计算每一家商店各自的总销售额时该怎么办呢?要实现这一目的我们需要做两件事:首先,我们需要查询商店名称和销售额两个字段;然后,我们使用SQL语言的GROUP BY命令将销售额按照不同的商店进行分组,从而计算出不同商店的销售总额。GROUP BY命令的语法格式为:
SELECT "column_name1", SUM("column_name2")
FROM "table_name"
GROUP BY "column_name1"
我们可以使用如下命令实现上述查询目的:
SELECT store_name, SUM(Sales)
FROM Store_Information
GROUP BY store_name
查询结果显示为:
store_name SUM(Sales)
Los Angeles $1800
San Diego $250
Boston $700
小注:
GROUP BY关键字一般应用于同时查询多个字段并对字段进行算术运算的SQL命令中。
HAVING
用户在使用SQL语言的过程中可能希望解决的另一个问题就是对由sum或其它集合函数运算结果的输出进行限制。例如,我们可能只希望看到Store_Information数据表中销售总额超过1500美圆的商店的信息,这时我们就需要使用HAVING从句。语法格式为:
SELECT "column_name1", SUM("column_name2")
FROM "table_name"
GROUP BY "column_name1"
HAVING (arithematic function condition)
(GROUP BY从句可选)
由此,我们可以使用如下命令实现上述查询目的:
SELECT store_name, SUM(sales)
FROM Store_Information
GROUP BY store_name
HAVING SUM(sales) > 1500
查询结果显示为:
store_name SUM(Sales)
Los Angeles $1800
小注:
SQL语言中设定集合函数的查询条件时使用HAVING从句而不是WHERE从句。通常情况下,HAVING从句被放置在SQL命令的结尾处。
ALIAS
下面,我们重点介绍一下如何在SQL命令中设定别名。SQL语言中一般使用两种类型的别名,分别为字段别名和数据表别名。
简单的说,使用字段别名可以帮助我们有效的组织查询的输出结果。例如,上文所列举的多个实例中,当我们计算商店销售总额时,显示结果中就会出现SUM(sales)。虽然SUM(sales)并不会对我们理解查询结果带来不便,但是如果我们需要在查询中使用多项复杂运算时,显示结果就不会这么直观了。如果这时我们使用字段别名就会极大的提高查询结果的可读性。
对于数据表别名,我们可以通过将别名直接放置在FROM从句中数据表名称的后面设定。数据表别名在我们下面将要讲述的连接多个数据表进行查询的操作中极为有用。
字段和数据表别名的语法格式如下:
SELECT "table_alias"."column_name1" "column_alias"
FROM "table_name" "table_alias"
即别名都直接放置在各自对应名称的后面,中间用空格分开。
以Store_Information数据表为例,我们可以在GROUP BY一节中所使用的SQL命令中设置如下字段和数据表别名:
SELECT A1.store_name Store, SUM(Sales) "Total Sales"
FROM Store_Information A1
GROUP BY A1.store_name
查询结果显示为:
Store Total Sales
Los Angeles $1800
San Diego $250
Boston $700
连接多个数据表
最后,我们来看一下如果使用SQL语言连接多个数据表,实现对多个数据表的查询。为方便讲解,我们在数据库中分别创建了两个名为Store_Information和Region的数据表。
Store_Information
Store_Name
Sales
Date
Los Angeles
$1500
Jan-10-2000
San Diego
$250
Jan-11-2000
Los Angeles
$300
Jan-12-2000
Boston
$700
Jan-12-2000
Region
Region_Name
Store_Name
East
Boston
East
New York
West
Los Angeles
West
San Diego
下面,我们就来看一下通过数据表的连接实现按不同区域查询销售额。
我们注意到在名为Region的数据表中包含区域和商店两个字段信息,而在名为Store_Information的数据表中则包含每一家商店的销售信息。因此,为了得到按区域划分的销售信息,我们需要将两个不同数据表的信息结合在一起进行查询。通过对上述两个数据表的分析,我们发现每个数据表中都包含一个名为Store_Name的字段,因此,我们可以使用如下命令实现查询目的:
SELECT A1.region_name REGION, SUM(A2.Sales) SALES
FROM Geography A1, Store_Information A2
WHERE A1.store_name = A2.store_name
GROUP BY A1.region_name
查询结果显示为:
REGION SALES
East $700
West $2050
说明:
上述查询命令的前两行用于指定所要查询的目标字段,分别为Region数据表中的Region_Name字段和Store_Information数据表中Sales字段的记录值总数。这里,我们设定两个字段的别名分别为REGION和SALES,两个数据表的别名分别为A1和A2。如果我们只使用字段别名而不设定数据表别名的话,上述SQL命令的第一行就变成 如下形式:
SELECT Region.Region_Name REGION, SUM(Store_Information.Sales) SALES
由此我们可以看出有效的使用数据表别名,可以极大的简化对多个数据表进行操作的SQL命令。
上述查询命令的第3行为WHERE从句,正是该从句设定了两个数据表的连接条件。因为我们希望确保Region数据表中的Store_Name字段能够与Store_Information数据表中的同名字段相对应,所以我们规定两个字段的记录值应当相等。在连接多个数据表时,一定要准确设定数据表的连接条件,如果WHERE从句设定不正确,则可能导致查询结果中出现众多不相关的数据

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











拡散はより良いものを模倣するだけでなく、「創造」することもできます。拡散モデル(DiffusionModel)は、画像生成モデルである。 AI 分野でよく知られている GAN や VAE などのアルゴリズムと比較すると、拡散モデルは異なるアプローチを採用しており、その主な考え方は、最初に画像にノイズを追加し、その後徐々にノイズを除去するプロセスです。ノイズを除去して元の画像を復元する方法は、アルゴリズムの中核部分です。最後のアルゴリズムは、ランダムなノイズを含む画像から画像を生成できます。近年、生成 AI の驚異的な成長により、テキストから画像への生成、ビデオ生成など、多くのエキサイティングなアプリケーションが可能になりました。これらの生成ツールの背後にある基本原理は、以前の方法の制限を克服する特別なサンプリング メカニズムである拡散の概念です。

0.この記事は何をするのですか?私たちは、多用途かつ高速な最先端の生成単眼深度推定モデルである DepthFM を提案します。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。この作品について一緒に読みましょう〜 1. 論文情報タイトル: DepthFM: FastMonocularDepthEstimationwithFlowMatching 著者: MingGui、JohannesS.Fischer、UlrichPrestel、PingchuanMa、Dmytr

キミ: たった 1 文の PPT がわずか 10 秒で完成します。 PPTはとても面倒です!会議を開催するには PPT が必要であり、週次報告書を作成するには PPT が必要であり、投資を勧誘するには PPT を提示する必要があり、不正行為を告発するには PPT を送信する必要があります。大学は、PPT 専攻を勉強するようなものです。授業中に PPT を見て、授業後に PPT を行います。おそらく、デニス オースティンが 37 年前に PPT を発明したとき、PPT がこれほど普及する日が来るとは予想していなかったでしょう。 PPT 作成の大変な経験を話すと涙が出ます。 「20 ページを超える PPT を作成するのに 3 か月かかり、何十回も修正しました。PPT を見ると吐きそうになりました。」 「ピーク時には 1 日に 5 枚の PPT を作成し、息をすることさえありました。」 PPTでした。」 即席の会議をするなら、そうすべきです

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

Xuexin.com で私の学歴を確認するにはどうすればよいですか? Xuexin.com で学歴を確認できますが、多くのユーザーは Xuexin.com で学歴を確認する方法を知りません。次に、エディターが Xuexin.com で学歴を確認する方法に関するグラフィック チュートリアルを提供します。興味のあるユーザーはぜひ見に来てください! Xuexin.com の使用方法チュートリアル: Xuexin.com で学歴を確認する方法 1. Xuexin.com の入り口: https://www.chsi.com.cn/ 2. Web サイトのクエリ: ステップ 1: Xuexin.com のアドレスをクリックします。上記をクリックしてホームページに入ります [教育クエリ]をクリックします; ステップ2: 最新のWebページで下図の矢印に示すように[クエリ]をクリックします; ステップ3: 新しいページで[学術単位ファイルにログイン]をクリックします; ステップ4: ログインページで情報を入力し、[ログイン]をクリックします。

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

北京時間6月20日早朝、シアトルで開催されている最高の国際コンピュータビジョンカンファレンス「CVPR2024」が、最優秀論文やその他の賞を正式に発表した。今年は、最優秀論文 2 件と学生優秀論文 2 件を含む合計 10 件の論文が賞を受賞しました。また、最優秀論文ノミネートも 2 件、学生優秀論文ノミネートも 4 件ありました。コンピュータービジョン (CV) 分野のトップカンファレンスは CVPR で、毎年多数の研究機関や大学が集まります。統計によると、今年は合計 11,532 件の論文が投稿され、2,719 件が採択され、採択率は 23.6% でした。ジョージア工科大学による CVPR2024 データの統計分析によると、研究テーマの観点から最も論文数が多いのは画像とビデオの合成と生成です (Imageandvideosyn
