参照パラメータが呼び出し関数の値を変更できるかどうか
参照パラメータは変数のアドレスを渡し、元の変数を直接変更できるため、実際に呼び出し関数の値を変更できます。
#参照パラメータが呼び出し関数の値を変更できるかどうか
はじめに
プログラミングでは、パラメーターを渡すには主に 2 つの方法があります。値渡しと参照渡しです。参照パラメータとは、変数のアドレスへのポインタを渡すことを指し、渡されたパラメータを関数の外部から変更できるようにします。この記事では、参照パラメータが呼び出し関数の値を変更できるかどうかを検討します。値渡しと参照渡し
- 値渡し: 引数のコピーを渡し、その中の変更を呼び出します。どちらの関数も元の変数には影響しません。
- 参照渡し: 変数のアドレスを渡すと、呼び出し関数のパラメーターの変更が元の変数に直接反映されます。
実際的なケース
以下は、参照渡しによって呼び出し側関数の値がどのように変更されるかを示す C プログラムです。出力:
#include <iostream> using namespace std; void swap(int& a, int& b) { int temp = a; a = b; b = temp; } int main() { int x = 5; int y = 10; cout << "Before swap: x = " << x << ", y = " << y << endl; swap(x, y); cout << "After swap: x = " << x << ", y = " << y << endl; return 0; }
main() の呼び出しでは、元の変数
x と
y の値が変更されます。
結論
参照パラメーターを使用すると、渡されたパラメーターを関数の外部から変更できますが、元の変数は参照によって渡された場合にのみ影響を受けます。値によって渡されるパラメーターの変更は、関数内のコピーにのみ影響します。関数パラメーターの動作を正しく理解するには、値渡しと参照渡しの違いを理解することが重要です。
以上が参照パラメータが呼び出し関数の値を変更できるかどうかの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











C++ オブジェクト レイアウトとメモリ アライメントにより、メモリ使用効率が最適化されます。 オブジェクト レイアウト: データ メンバーは宣言の順序で格納され、スペース使用率が最適化されます。メモリのアライメント: アクセス速度を向上させるために、データがメモリ内でアライメントされます。 alignas キーワードは、キャッシュ ラインのアクセス効率を向上させるために、64 バイトにアライメントされた CacheLine 構造などのカスタム アライメントを指定します。

カスタム コンパレータの実装は、operator() をオーバーロードするクラスを作成することで実現できます。このクラスは 2 つのパラメータを受け取り、比較の結果を示します。たとえば、StringLengthComparator クラスは、文字列の長さを比較して文字列を並べ替えます。クラスを作成し、operator() をオーバーロードして、比較結果を示すブール値を返します。コンテナアルゴリズムでの並べ替えにカスタムコンパレータを使用する。カスタム コンパレータを使用すると、カスタム比較基準を使用する必要がある場合でも、カスタム基準に基づいてデータを並べ替えたり比較したりできます。

C++ でストラテジ パターンを実装する手順は次のとおりです。ストラテジ インターフェイスを定義し、実行する必要があるメソッドを宣言します。特定の戦略クラスを作成し、それぞれインターフェイスを実装し、さまざまなアルゴリズムを提供します。コンテキスト クラスを使用して、具体的な戦略クラスへの参照を保持し、それを通じて操作を実行します。

Golang と C++ は、それぞれガベージ コレクションと手動メモリ管理のプログラミング言語であり、構文と型システムが異なります。 Golang は Goroutine を通じて同時プログラミングを実装し、C++ はスレッドを通じて同時プログラミングを実装します。 Golang のメモリ管理はシンプルで、C++ の方がパフォーマンスが優れています。実際の場合、Golang コードはより簡潔であり、C++ には明らかにパフォーマンス上の利点があります。

C++ STL コンテナをコピーするには 3 つの方法があります。 コピー コンストラクターを使用して、コンテナの内容を新しいコンテナにコピーします。代入演算子を使用して、コンテナの内容をターゲット コンテナにコピーします。 std::copy アルゴリズムを使用して、コンテナー内の要素をコピーします。

C++ スマート ポインターは、ポインター カウント、デストラクター、仮想関数テーブルを通じて自動メモリ管理を実装します。ポインター カウントは参照の数を追跡し、参照の数が 0 に低下すると、デストラクターは元のポインターを解放します。仮想関数テーブルによりポリモーフィズムが可能になり、さまざまなタイプのスマート ポインターに対して特定の動作を実装できるようになります。

ネストされた例外処理は、ネストされた try-catch ブロックを通じて C++ に実装され、例外ハンドラー内で新しい例外を発生させることができます。ネストされた try-catch ステップは次のとおりです。 1. 外側の try-catch ブロックは、内側の例外ハンドラーによってスローされた例外を含むすべての例外を処理します。 2. 内部の try-catch ブロックは特定のタイプの例外を処理し、スコープ外の例外が発生した場合、制御は外部例外ハンドラーに渡されます。

アクター モデルに基づく C++ マルチスレッド プログラミングの実装: 独立したエンティティを表すアクター クラスを作成します。メッセージを保存するメッセージキューを設定します。アクターがキューからメッセージを受信して処理するためのメソッドを定義します。 Actor オブジェクトを作成し、スレッドを開始してそれらを実行します。メッセージ キューを介してアクターにメッセージを送信します。このアプローチは、高い同時実行性、スケーラビリティ、分離性を提供するため、多数の並列タスクを処理する必要があるアプリケーションに最適です。
