テンプレート プログラミングにおける C++ 関数のデフォルト パラメーターと変数パラメーターの特別な使用法
C でのテンプレート プログラミングにおけるデフォルト パラメータと可変パラメータの特別な使用法: デフォルト パラメータを使用すると、パラメータが指定されていない場合に関数がデフォルト値を使用できるようになり、それによって関数のオーバーロードの汎用化が実現します。変数パラメーターを使用すると、関数は任意の数のパラメーターを受け取ることができるため、コードの多様性が実現し、任意の数のパラメーターを処理する関数または汎用コンテナーに使用できます。実際のケース: デフォルトのパラメーターを使用して、さまざまな種類の小数に対してさまざまな精度を指定する、一般的な 10 進数の書式設定関数を実装しました。
テンプレート プログラミングにおける C 関数のデフォルト パラメーターと可変パラメーターの特殊な使用法
C テンプレート プログラミングでは、デフォルト パラメーターと可変パラメーターを使用することで、さまざまな可能性が高まります。コードの効率と汎用性が向上します。特別な使用法を見てみましょう:
デフォルト パラメータ
デフォルト パラメータを使用すると、関数を呼び出すときに特定のパラメータを省略できます。パラメータが指定されていない場合は、デフォルト値が使用されます。例:
template<typename T, typename U = T> auto sum(T a, U b = 0) { return a + b; }
上記の例では、b
はデフォルト パラメータであり、デフォルト値は 0 です。この関数は次のように呼び出すことができます。
int total = sum(10); // b 默认值为 0,结果为 10
可変個パラメータ
可変個パラメータを使用すると、関数は任意の数の引数を受け取ることができます。これらは、...
演算子を使用して表されます。例:
template<typename T> auto print_all(T... args) { for (auto arg : {args...}) { std::cout << arg << ' '; } std::cout << '\n'; }
この例の args
は、任意の数の T
型引数を受け取ることができる可変長引数パックです。この関数は次のように呼び出すことができます:
print_all(1, 2.5, "hello"); // 输出:"1 2.5 hello"
テンプレート プログラミングにおける特別な使用法
- 関数のオーバーロードとジェネリック化: デフォルト パラメーターは一般化できます。関数がオーバーロードされるため、特定のパラメーターの依存関係が不要になります。たとえば、汎用の印刷関数にさまざまな種類のデフォルトの区切り文字を提供できます。
template<typename T, typename D = char> auto print_delimited(T value, D delimiter = ' ') { std::cout << value; if constexpr (std::is_same_v<D, char>) { // 如果分隔符为字符 std::cout << delimiter; } else { // 如果分隔符为字符串 std::cout << delimiter << '\n'; } }
- 引数の数を一般化します。 可変長引数を使用すると、関数で任意の値を処理できるようになります。パラメータの数を増やしてコードの汎用性を実現します。たとえば、任意の数の引数を渡す sum 関数で可変個引数を使用できます。
template<typename T> auto sum_all(T... args) { return (... + args); }
- コンテナのジェネリック化: デフォルト パラメーターと可変個引数パラメーターは重要な役割を果たします。コンテナのジェネリック化において。たとえば、関数呼び出しから要素の型を推測できる汎用コンテナを作成できます。
template<typename T, typename Alloc = std::allocator<T>> class Vector { public: Vector(T... args) { for (auto arg : {args...}) { emplace_back(arg); } } };
実践例
汎用 10 進形式関数を作成する、デフォルトのパラメーターを使用して、さまざまな種類の小数にさまざまな精度を指定します:
template<typename T, typename D = T, D precision = 2> std::string format_float(T value) { std::stringstream ss; ss << std::fixed << std::setprecision(precision) << value; return ss.str(); }
この関数は次のシナリオで使用できます:
std::cout << format_float(3.14159265) << '\n'; // 输出:"3.14" (默认精度为 2) std::cout << format_float<float>(3.14159265, 6) << '\n'; // 输出:"3.141593" (精度为 6)
以上がテンプレート プログラミングにおける C++ 関数のデフォルト パラメーターと変数パラメーターの特別な使用法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









C++ でストラテジ パターンを実装する手順は次のとおりです。ストラテジ インターフェイスを定義し、実行する必要があるメソッドを宣言します。特定の戦略クラスを作成し、それぞれインターフェイスを実装し、さまざまなアルゴリズムを提供します。コンテキスト クラスを使用して、具体的な戦略クラスへの参照を保持し、それを通じて操作を実行します。

ネストされた例外処理は、ネストされた try-catch ブロックを通じて C++ に実装され、例外ハンドラー内で新しい例外を発生させることができます。ネストされた try-catch ステップは次のとおりです。 1. 外側の try-catch ブロックは、内側の例外ハンドラーによってスローされた例外を含むすべての例外を処理します。 2. 内部の try-catch ブロックは特定のタイプの例外を処理し、スコープ外の例外が発生した場合、制御は外部例外ハンドラーに渡されます。

C++ テンプレートの継承により、テンプレート派生クラスが基本クラス テンプレートのコードと機能を再利用できるようになり、コア ロジックは同じだが特定の動作が異なるクラスを作成するのに適しています。テンプレート継承の構文は次のとおりです: templateclassDerived:publicBase{}。例: templateclassBase{};templateclassDerived:publicBase{};。実際のケース: 派生クラス Derived を作成し、基本クラス Base のカウント関数を継承し、現在のカウントを出力する printCount メソッドを追加しました。

エラーの原因とソリューションPECLを使用してDocker環境に拡張機能をインストールする場合、Docker環境を使用するときに、いくつかの頭痛に遭遇します...

Cでは、文字列でCharタイプが使用されます。1。単一の文字を保存します。 2。配列を使用して文字列を表し、ヌルターミネーターで終了します。 3。文字列操作関数を介して動作します。 4.キーボードから文字列を読み取りまたは出力します。

マルチスレッド C++ では、例外処理は std::promise および std::future メカニズムを通じて実装されます。promise オブジェクトを使用して、例外をスローするスレッドで例外を記録します。 future オブジェクトを使用して、例外を受信するスレッドで例外を確認します。実際のケースでは、Promise と Future を使用して、さまざまなスレッドで例外をキャッチして処理する方法を示します。

言語のマルチスレッドは、プログラムの効率を大幅に改善できます。 C言語でマルチスレッドを実装する4つの主な方法があります。独立したプロセスを作成します。独立して実行される複数のプロセスを作成します。各プロセスには独自のメモリスペースがあります。擬似マルチスレッド:同じメモリ空間を共有して交互に実行するプロセスで複数の実行ストリームを作成します。マルチスレッドライブラリ:pthreadsなどのマルチスレッドライブラリを使用して、スレッドを作成および管理し、リッチスレッド操作機能を提供します。 Coroutine:タスクを小さなサブタスクに分割し、順番に実行する軽量のマルチスレッド実装。

C35の計算は、本質的に組み合わせ数学であり、5つの要素のうち3つから選択された組み合わせの数を表します。計算式はC53 = 5です! /(3! * 2!)。これは、ループで直接計算して効率を向上させ、オーバーフローを避けることができます。さらに、組み合わせの性質を理解し、効率的な計算方法をマスターすることは、確率統計、暗号化、アルゴリズム設計などの分野で多くの問題を解決するために重要です。
