pycharmでできること
PyCharm は、Python アプリケーションの開発を簡素化するための包括的なツールと機能を提供する強力な Python 開発環境 (IDE) です。その中心的な機能には次のものが含まれます。 コード エディター: 構文の強調表示、オートコンプリート、コードの折りたたみ、カスタマイズ可能なカラー スキーム。デバッガー: ブレークポイント、シングルステップ デバッグ、変数検査をサポートする対話型デバッガー。バージョン管理の統合: Git、Mercurial、Subversion などのバージョン管理システムをサポートします。コード レビュー: コード検査と静的コード分析機能によりコードの品質を向上させます。
PyCharm では何ができるのでしょうか?
PyCharm は、Python アプリケーションの開発を簡素化するための包括的なツールと機能を開発者に提供する強力な Python 開発環境 (IDE) です。
主な機能:
- コード エディタ: 構文の強調表示、オートコンプリート、コードの折りたたみ、カスタマイズ可能な配色。
- デバッガー: 対話型デバッガー。ブレークポイント、シングルステップ デバッグ、変数検査をサポートします。
- バージョン管理の統合: Git、Mercurial、Subversion などのバージョン管理システムをサポートします。
- コード レビュー: コード検査と静的コード分析機能を通じてコードの品質を向上させます。
- 単体テストの統合: unittest や pytest などの主流の単体テスト フレームワークとのシームレスな統合。
- リモート開発: コードのリモート実行およびデバッグ機能を通じて、さまざまな環境でコードを開発およびテストします。
- 拡張性: PyCharm の機能は、プラグインやサードパーティの統合を通じて拡張できます。
その他の機能:
- IntelliSense: コンテキストに基づいてコードの提案とドキュメントを提供します。
- リファクタリングのサポート: コード構造を維持するために、コード要素の名前変更、移動、削除を行います。
- ビジュアル デバッガー: コードの実行と変数のステータスをグラフィカルに表示します。
- データベース ツール: データベースに接続し、クエリを実行するために使用されます。
- 科学ツール: NumPy、SciPy、Matplotlib などの科学計算ライブラリをサポートします。
- Web 開発ツール: Django、Flask、Jinja2 などの Web フレームワークの統合用。
以上がpycharmでできることの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

Centosのインストール手順:ISO画像をダウンロードし、起動可能なメディアを燃やします。起動してインストールソースを選択します。言語とキーボードのレイアウトを選択します。ネットワークを構成します。ハードディスクをパーティション化します。システムクロックを設定します。ルートユーザーを作成します。ソフトウェアパッケージを選択します。インストールを開始します。インストールが完了した後、ハードディスクから再起動して起動します。

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。

PytorchをCentosシステムにインストールする場合、適切なバージョンを慎重に選択し、次の重要な要因を検討する必要があります。1。システム環境互換性:オペレーティングシステム:Centos7以上を使用することをお勧めします。 Cuda and Cudnn:PytorchバージョンとCudaバージョンは密接に関連しています。たとえば、pytorch1.9.0にはcuda11.1が必要ですが、pytorch2.0.1にはcuda11.3が必要です。 CUDNNバージョンは、CUDAバージョンとも一致する必要があります。 Pytorchバージョンを選択する前に、互換性のあるCUDAおよびCUDNNバージョンがインストールされていることを確認してください。 Pythonバージョン:Pytorch公式支店

Docker Imageホスティングプラットフォームは、Docker画像の管理と保存に使用されるため、開発者やユーザーが事前に構築されたソフトウェア環境に簡単にアクセスして使用できます。一般的なプラットフォームには以下が含まれます。DockerHub:Dockerが正式にメンテナンスし、巨大なミラーライブラリがあります。 GitHubコンテナレジストリ:GitHubエコシステムを統合します。 Googleコンテナレジストリ:Google Cloud Platformがホストしています。 Amazon Elastic Containerレジストリ:AWSがホスト。 quay.io:赤い帽子
