全国人民代表大会のマルチモーダルモデルがAGIに移行:初めて独立した更新を実現し、写真ビデオの生成はSoraを超える
一方で、人々は身体化されたインテリジェンスが適応可能であることを期待しています。つまり、エージェントは継続的な学習を通じて変化するアプリケーション環境に適応でき、既知の複数の環境でタスクを実行できます。 -モーダルタスクはますます良くなり、未知のマルチモーダルタスクにもすぐに適応できます。
その一方で、人々はまた、身体化された知性が真に創造的であることを期待しており、環境の自律的な探索を通じて新しい戦略や解決策を発見し、境界を探索できることを期待しています。人工知能の機能。マルチモーダルな大規模モデルを身体化された知能の「頭脳」として使用することで、身体化された知能の適応性と創造性を劇的に向上させ、最終的には AGI の閾値に近づく (または AGI を達成する) 可能性があります。
しかし、既存の大規模なマルチモーダル モデルには 2 つの明らかな問題があります。1 つ目は、モデルの反復更新サイクルが長く、多大な人的および財政的投資が必要であることです。 、モデルのトレーニング データはすべて既存のデータから派生しており、モデルは大量の新しい知識を継続的に取得することはできません。 RAG と長いコンテキストを通じて継続的な新しい知識を注入することもできますが、マルチモーダル大規模モデル自体はこれらの新しい知識を学習しないため、これら 2 つの修復方法も追加の問題を引き起こします。
つまり、現在の大規模なマルチモーダル モデルは、創造性どころか、実際のアプリケーション シナリオにもあまり適応できず、業界で実装すると常に失敗するというさまざまな問題が発生します。起きます。
Sophon Engineが今回リリースしたAwaker 1.0は、身体化された知性の「頭脳」として活用できる、自律更新機構を備えた世界初のマルチモーダル大型モデルです。 。 Awaker 1.0 の自律更新メカニズムには、アクティブなデータ生成、モデルの反映と評価、継続的なモデル更新という 3 つの主要なテクノロジーが含まれています。
他の大規模なマルチモーダル モデルとは異なり、Awaker 1.0 は「ライブ」であり、そのパラメーターはリアルタイムで継続的に更新できます。
上記のフレーム図からわかるように、Awaker 1.0 はさまざまなスマート デバイスと組み合わせることができ、スマート デバイスを通じて世界を観察し、行動意図を生成し、コマンドを自動的に構築します。スマートデバイスを制御してさまざまなアクションを実行します。スマートデバイスは、さまざまなアクションを完了すると、さまざまなフィードバックを自動的に生成します。Awaker 1.0 は、これらのアクションとフィードバックから効果的なトレーニング データを取得し、継続的に自己更新し、モデルのさまざまな機能を継続的に強化します。
新しい知識の注入を例に挙げると、Awaker 1.0 はインターネット上の最新のニュース情報を継続的に学習し、新しく学習したニュース情報に基づいてさまざまな複雑な質問に答えることができます。 RAG やロングコンテキストの従来の方法とは異なり、Awaker 1.0 は真に新しい知識を学習し、モデルのパラメーターを「記憶」することができます。
# 世代##Awaker 1.0 の側面は、Sophon Engine が独自に開発した Sora 風のビデオ生成ベース VDT であり、現実世界のシミュレーターとして使用できます。 VDTの研究結果は、OpenAIがSoraをリリースする10か月前の2023年5月にarXivのWebサイトで公開された。 VDTの学術論文が人工知能のトップ国際会議であるICLR 2024に採択されました。
#ビデオ生成ベース VDT の革新には、主に次の側面が含まれます。
- 適用Transformer テクノロジーによる拡散ベースのビデオ生成は、ビデオ生成の分野における Transformer の大きな可能性を示しています。 VDT の利点は、優れた時間依存キャプチャ機能であり、時間の経過に伴う 3 次元オブジェクトの物理ダイナミクスのシミュレーションなど、時間的にコヒーレントなビデオ フレームの生成を可能にします。
- VDT がさまざまなビデオ生成タスクを処理できるようにするための、統合された時空間マスク モデリング メカニズムを提案し、この技術の幅広い応用を実現します。単純なトークン空間スプライシングなどの VDT の柔軟な条件付き情報処理方法は、さまざまな長さや形式の情報を効果的に統合します。同時に、時空間マスク モデリング メカニズムと組み合わせることで、VDT は普遍的なビデオ拡散ツールとなり、無条件生成、ビデオの後続フレーム予測、フレーム補間、画像生成ビデオ、およびビデオ フレームを変更することなく適用できます。モデル構造の完成およびその他のビデオ生成タスク。
私たちは、VDT による単純な物理法則のシミュレーションの探索に焦点を当て、Physion データセットで VDT をトレーニングしました。以下の例では、VDT が放物線の軌道に沿って移動するボールや、平面上を転がって他の物体と衝突するボールなどの物理プロセスをうまくシミュレートしていることがわかります。同時に、2 行目の 2 番目の例からは、ボールが衝撃不足で柱を倒すことがなかったため、VDT がボールの速度と勢いを捉えていることもわかります。これは、Transformer アーキテクチャが特定の物理法則を学習できることを証明しています。
##Awaker 1.0 は、Sophon エンジン チームの最終目標です。 AGI」 目標に向けた重要な一歩。研究チームは、自己探索や内省などの AI の自律学習能力が知能レベルの重要な評価基準であり、パラメーター サイズの継続的な増加 (スケーリング則) と同様に重要であると考えています。 Awaker 1.0は、「アクティブなデータ生成、モデルの反映と評価、継続的なモデル更新」などの主要な技術フレームワークを実装しており、理解側と生成側の両方でブレークスルーを達成し、マルチモーダル大規模な開発を加速することが期待されています。産業をモデル化し、最終的には人間が AGI を実現できるようにします。
以上が全国人民代表大会のマルチモーダルモデルがAGIに移行:初めて独立した更新を実現し、写真ビデオの生成はSoraを超えるの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









でももしかしたら公園の老人には勝てないかもしれない?パリオリンピックの真っ最中で、卓球が注目を集めています。同時に、ロボットは卓球のプレーにも新たな進歩をもたらしました。先ほど、DeepMind は、卓球競技において人間のアマチュア選手のレベルに到達できる初の学習ロボット エージェントを提案しました。論文のアドレス: https://arxiv.org/pdf/2408.03906 DeepMind ロボットは卓球でどれくらい優れていますか?おそらく人間のアマチュアプレーヤーと同等です: フォアハンドとバックハンドの両方: 相手はさまざまなプレースタイルを使用しますが、ロボットもそれに耐えることができます: さまざまなスピンでサーブを受ける: ただし、ゲームの激しさはそれほど激しくないようです公園の老人。ロボット、卓球用

8月21日、2024年世界ロボット会議が北京で盛大に開催された。 SenseTimeのホームロボットブランド「Yuanluobot SenseRobot」は、全製品ファミリーを発表し、最近、世界初の家庭用チェスロボットとなるYuanluobot AIチェスプレイロボット - Chess Professional Edition(以下、「Yuanluobot SenseRobot」という)をリリースした。家。 Yuanluobo の 3 番目のチェス対局ロボット製品である新しい Guxiang ロボットは、AI およびエンジニアリング機械において多くの特別な技術アップグレードと革新を経て、初めて 3 次元のチェスの駒を拾う機能を実現しました。家庭用ロボットの機械的な爪を通して、チェスの対局、全員でのチェスの対局、記譜のレビューなどの人間と機械の機能を実行します。

もうすぐ学校が始まり、新学期を迎える生徒だけでなく、大型AIモデルも気を付けなければなりません。少し前、レディットはクロードが怠け者になったと不満を漏らすネチズンでいっぱいだった。 「レベルが大幅に低下し、頻繁に停止し、出力も非常に短くなりました。リリースの最初の週は、4 ページの文書全体を一度に翻訳できましたが、今では 0.5 ページの出力さえできません」 !」 https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ というタイトルの投稿で、「クロードには完全に失望しました」という内容でいっぱいだった。

北京で開催中の世界ロボット会議では、人型ロボットの展示が絶対的な注目となっているスターダストインテリジェントのブースでは、AIロボットアシスタントS1がダルシマー、武道、書道の3大パフォーマンスを披露した。文武両道を備えた 1 つの展示エリアには、多くの専門的な聴衆とメディアが集まりました。弾性ストリングのエレガントな演奏により、S1 は、スピード、強さ、正確さを備えた繊細な操作と絶対的なコントロールを発揮します。 CCTVニュースは、「書道」の背後にある模倣学習とインテリジェント制御に関する特別レポートを実施し、同社の創設者ライ・ジエ氏は、滑らかな動きの背後にあるハードウェア側が最高の力制御と最も人間らしい身体指標(速度、負荷)を追求していると説明した。など)、AI側では人の実際の動きのデータが収集され、強い状況に遭遇したときにロボットがより強くなり、急速に進化することを学習することができます。そしてアジャイル

貢献者はこの ACL カンファレンスから多くのことを学びました。 6日間のACL2024がタイのバンコクで開催されています。 ACL は、計算言語学と自然言語処理の分野におけるトップの国際会議で、国際計算言語学協会が主催し、毎年開催されます。 ACL は NLP 分野における学術的影響力において常に第一位にランクされており、CCF-A 推奨会議でもあります。今年の ACL カンファレンスは 62 回目であり、NLP 分野における 400 以上の最先端の作品が寄せられました。昨日の午後、カンファレンスは最優秀論文およびその他の賞を発表しました。今回の優秀論文賞は7件(未発表2件)、最優秀テーマ論文賞1件、優秀論文賞35件です。このカンファレンスでは、3 つの Resource Paper Award (ResourceAward) と Social Impact Award (

今日の午後、Hongmeng Zhixingは新しいブランドと新車を正式に歓迎しました。 8月6日、ファーウェイはHongmeng Smart Xingxing S9およびファーウェイのフルシナリオ新製品発表カンファレンスを開催し、パノラマスマートフラッグシップセダンXiangjie S9、新しいM7ProおよびHuawei novaFlip、MatePad Pro 12.2インチ、新しいMatePad Air、Huawei Bisheng Withを発表しました。レーザー プリンタ X1 シリーズ、FreeBuds6i、WATCHFIT3、スマート スクリーン S5Pro など、スマート トラベル、スマート オフィスからスマート ウェアに至るまで、多くの新しいオールシナリオ スマート製品を開発し、ファーウェイは消費者にスマートな体験を提供するフル シナリオのスマート エコシステムを構築し続けています。すべてのインターネット。宏孟志興氏:スマートカー業界のアップグレードを促進するための徹底的な権限付与 ファーウェイは中国の自動車業界パートナーと提携して、

ビジョンとロボット学習の緊密な統合。最近話題の1X人型ロボットNEOと合わせて、2つのロボットハンドがスムーズに連携して服をたたむ、お茶を入れる、靴を詰めるといった動作をしていると、いよいよロボットの時代が到来するのではないかと感じられるかもしれません。実際、これらの滑らかな動きは、高度なロボット技術 + 精緻なフレーム設計 + マルチモーダル大型モデルの成果です。有用なロボットは多くの場合、環境との複雑かつ絶妙な相互作用を必要とし、環境は空間領域および時間領域の制約として表現できることがわかっています。たとえば、ロボットにお茶を注いでもらいたい場合、ロボットはまずティーポットのハンドルを掴んで、お茶をこぼさないように垂直に保ち、次にポットの口がカップの口と揃うまでスムーズに動かす必要があります。 、そしてティーポットを一定の角度に傾けます。これ

会議の紹介 科学技術の急速な発展に伴い、人工知能は社会の進歩を促進する重要な力となっています。この時代に、分散型人工知能 (DAI) の革新と応用を目撃し、参加できることは幸運です。分散型人工知能は人工知能分野の重要な分野であり、近年ますます注目を集めています。大規模言語モデル (LLM) に基づくエージェントは、大規模モデルの強力な言語理解機能と生成機能を組み合わせることで、自然言語対話、知識推論、タスク計画などにおいて大きな可能性を示しました。 AIAgent は大きな言語モデルを引き継ぎ、現在の AI 界隈で話題になっています。アウ
