Web サービスで人工知能と機械学習を活用する方法
人工知能テクノロジーをさまざまな製品に統合することは、特にネットワーク サービス システムにおいて大きな変革をもたらしています。人工知能の定義は、プログラミング コードにヒューリスティックと確率を含むように拡張され、より効率的なデータ処理と問題解決機能への道が開かれました。
機械学習 (ML) 市場は世界的に急成長しています。 2022年には約192億ドルの価値になる。専門家らは、この数字が2030年までに2,259億1,000万ドルに急増すると予測しています。この記事では、人工知能と機械学習 (ML) が Web サービスに与える大きな影響を詳しく掘り下げ、それらが大量のデータの処理方法にどのような革命をもたらしているかを明らかにします。 過去数年間で、機械学習テクノロジーはさまざまな分野、特にデータ処理において大きな進歩を遂げました。機械学習モデルを使用することで、大規模なデータから有用な情報を抽出し、正確な予測を行うことができます。 ネットワーク サービス プロバイダーにとって、機械学習テクノロジーの適用により、サービスの品質が大幅に向上します。大量のユーザー データを収集して分析することで、機械学習モデルは潜在的な問題を自動的に特定し、
AI のデータ管理効率
を活用できます。本質的に、AI は、IT が直面している最も重要な課題の 1 つである大量のデータを効率的に管理することに優れています。データ。人工知能は、コンピューティング速度と分類アルゴリズムを通じて、ネットワーク管理者が問題を迅速に特定して解決できるようにします。人工知能の一部として、機械学習は確率を利用して問題を迅速に特定し、ネットワーク サービスを前例のない高みに引き上げます。
2021 年、世界の通信市場における人工知能の価値は 12 億米ドルに達しました。専門家らは、2031年までに大幅に成長し、388億ドルという驚異的な規模に達すると予測している。 2022 年から 2031 年にかけて、年間 41.4% という驚異的な速度で成長すると予想されます。これは、通信業界における人工知能テクノロジーの価値が継続的に増加しており、市場に大きな影響を与えることを示しています。
ネットワーク サービスにおける人工知能と機械学習: 主要分野
人工知能は、特に機械学習と組み合わせた場合、ネットワーク サービスの次の主要分野に参入しています:
1. 実験によると、マシンに基づいています。学習ツールは、ネットワーク トラフィック パターンを予測する上で大きな変革をもたらす可能性があります。機械学習アルゴリズムは、ニューラル ネットワークと遺伝的アルゴリズムの力を利用することで、パターン マッチング機能を強化できます。生物学的ニューロンの複雑な働きにヒントを得たニューラル ネットワークは、データを処理して隠れたパターンを特定し、将来のトラフィック傾向を正確に予測できるようにします。
人工知能は、継続的な監視とより良いトラフィックシェーピングのための増分調整を通じて、トラフィック管理において重要な役割を果たします。たとえば、D-Link はスイッチベースのリアルタイム トラフィック管理を実装し、効率的なネットワーク トラフィック制御を保証します。一方、Cisco は流出アプローチを採用し、Catalyst 9000 スイッチのネットワーク監視ソフトウェアに人工知能と機械学習を採用しました。このアプローチは、より広範なソリューションとフルキャパシティ プランニングに適しており、ネットワーク管理者にとって柔軟なオプションになります。
2. パフォーマンス監視
人工知能の助けを借りて、ネットワーク管理者はより正確なパフォーマンス アラーム値を設定し、ネットワーク効率をより深く理解できます。人工知能と機械学習を活用し、Cisco、Juniper、LogicMonitor などのサードパーティ ツールを使用すると、ネットワーク管理者は根本原因分析を実行できるため、ネットワーク パフォーマンスが向上し、トラフィック分析が改善されます。
3. キャパシティ プランニング
キャパシティ プランニングはネットワーク サービスのもう 1 つの重要な側面であり、人工知能と機械学習が大きな影響を与えています。 AI 主導のキャパシティ プランニング ツールは、トラフィック シミュレーションを効率的に処理し、パフォーマンスの期待値を切り替えて、需要が高い期間でも最適なネットワーク パフォーマンスを保証します。
4. セキュリティ監視
ネットワーク サービスにおいて人工知能が威力を発揮する最も重要な領域の 1 つは、セキュリティ監視です。サイバーセキュリティにおいて、オンラインの脅威を検出して対応するために、人工知能と機械学習の重要性がますます高まっています。敵対者も AI を使用しているため、企業は自社を守るために AI を使用する必要があります。サイバーセキュリティに人工知能を使用していない企業は、リスクの増加と悪影響に直面する可能性があります。人工知能は、組織がさまざまなリスクに適切に対処し、問題をより迅速に特定し、デジタル世界の変化に適応するのに役立ちます。
AI は、ログ ファイル内の悪意のあるアクティビティのパターンを検出することでセキュリティ情報およびイベント管理 (SIEM) を強化し、潜在的な脅威に対する迅速な対応を可能にします。ユーザーおよびエンティティ行動分析 (UEBA) は、ネットワーク セキュリティ、特に侵入検知システム (IDS) や次世代ウイルス対策システム (NGAV) で広く使用されている強力な人工知能主導のツールです。 UEBA は、侵入防御システム (IPS) の誤検知を排除し、その有効性を大幅に高めます。さらに、次世代のウイルス対策システムは、保護されたシステムに初めてウイルスが出現したときにウイルスを識別するためのベースラインとして UEBA を利用します。
5. AI 主導のネットワーク計画と最適化
人工知能と機械学習プロセスは、強力なネットワーク サービス ツールにますます不可欠な部分になりつつあります。これらのテクノロジーは、仮想ネットワークの作成と潜在的なボトルネックの特定において重要な役割を果たし、ネットワーク サービス活動の全体的な成功に貢献します。 ML によるトレンド分析とトラフィック追跡の実装により、ネットワーク パフォーマンスを最適化するエンジニアの能力がさらに強化されます。
6. 高度な分析: 賢明な意思決定のための洞察を明らかにする
ネットワーク分析に機械学習を組み込むことで、可能性の宝庫が開かれます。機械学習主導の分析により、トラフィック傾向についての深い洞察が得られ、ネットワーク管理者や設計者は情報に基づいた意思決定を行うことができます。ネットワークの使用状況が時間の経過とともにどのように変化するかを理解すると、効率的で堅牢なネットワークを設計する際に、事前に対策を講じることができます。
履歴データを分析することで、機械学習アルゴリズムはパターンと繰り返し発生する傾向を特定できます。この知識は、ネットワークのニーズを予測し、リソース割り当てを最適化し、将来の成長を計画するのに役立ちます。
7. 強化された健康監視: プロアクティブなネットワーク メンテナンスを作成します
機械学習による健康管理は、24 時間 365 日対応のオンライン医師に似ています。機械学習アルゴリズムは、ネットワーク コンポーネントとパフォーマンス メトリクスを継続的に監視することで、コンポーネント障害の初期の兆候を検出し、致命的な障害に発展する前に潜在的な問題を予測できます。
ネットワークの健全性に対するこのプロアクティブなアプローチにより、ダウンタイムとメンテナンスのコストが大幅に削減されます。ネットワーク全体が危険にさらされる前に、重要なネットワーク コンポーネントを交換または修理できます。機械学習を指導力として使用することで、ネットワークの信頼性と稼働時間は前例のないレベルに達し、ビジネスの継続性とユーザーの満足度が向上します。
概要
人工知能と機械学習の融合によりネットワーク サービスに革命が起こり、ネットワーク管理者に比類のないデータ処理、問題解決、トラフィック最適化の効率を提供します。人工知能の変革力は、トラフィック管理やパフォーマンス監視から容量計画やセキュリティに至るまで、ネットワーク サービスの状況を再構築しています。これらの最先端のテクノロジーを採用することで、世界中の組織のネットワーク インフラストラクチャがより強力で安全になることは間違いありません。
以上がWeb サービスで人工知能と機械学習を活用する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス
