C++ における再帰の実践: 画像処理とデータ分析の事例
再帰は、次のような C で広く使用されています。 画像処理: 画像の縮小は、画像を再帰的に小さな部分に分割し、縮小操作を繰り返し呼び出します。データ分析: ソートのマージ: 配列をより小さいサブ配列に再帰的に分割し、ソートされたサブ配列をマージすることによって実現されます。二分探索: 再帰によって順序付けされた配列内のターゲット要素を見つけます。
C での再帰の実践的な応用: 画像処理とデータ分析のケース
再帰は強力なプログラミング テクノロジであり、問題は解決されました。関数内で自分自身を呼び出すことによって。 C では、再帰には次のような幅広い用途があります。
画像処理
-
画像削減:Reduce画像 特定のサイズまでは、画像をより小さな部分に再帰的に分割し、縮小操作を再帰的に呼び出すことができます。
// 递归缩小图像 Image resize(Image image, int new_width, int new_height) { if (image.width == new_width && image.height == new_height) { return image; } // 缩小图像是原图的一半 Image half_size = resize(image, image.width / 2, image.height / 2); // 扩大缩小的图像到指定尺寸 return half_size.resize(new_width, new_height); }
ログイン後にコピー
データ分析
##マージソート: 効果的で安定したソートアルゴリズム。配列をより小さいサブ配列に再帰的に分割し、ソートされたサブ配列をマージします。
// 递归归并排序 void merge_sort(int* arr, int n) { if (n <= 1) { return; } int mid = n / 2; int* left_arr = new int[mid]; int* right_arr = new int[n - mid]; for (int i = 0; i < mid; i++) { left_arr[i] = arr[i]; } for (int i = mid; i < n; i++) { right_arr[i - mid] = arr[i]; } merge_sort(left_arr, mid); merge_sort(right_arr, n - mid); merge(arr, left_arr, mid, right_arr, n - mid); delete[] left_arr; delete[] right_arr; }
ログイン後にコピーバイナリ検索: 再帰によって順序付けされた配列内のターゲット要素を見つける効率的な検索アルゴリズム。 rreeee
以上がC++ における再帰の実践: 画像処理とデータ分析の事例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









C++ でストラテジ パターンを実装する手順は次のとおりです。ストラテジ インターフェイスを定義し、実行する必要があるメソッドを宣言します。特定の戦略クラスを作成し、それぞれインターフェイスを実装し、さまざまなアルゴリズムを提供します。コンテキスト クラスを使用して、具体的な戦略クラスへの参照を保持し、それを通じて操作を実行します。

Golang と C++ は、それぞれガベージ コレクションと手動メモリ管理のプログラミング言語であり、構文と型システムが異なります。 Golang は Goroutine を通じて同時プログラミングを実装し、C++ はスレッドを通じて同時プログラミングを実装します。 Golang のメモリ管理はシンプルで、C++ の方がパフォーマンスが優れています。実際の場合、Golang コードはより簡潔であり、C++ には明らかにパフォーマンス上の利点があります。

ネストされた例外処理は、ネストされた try-catch ブロックを通じて C++ に実装され、例外ハンドラー内で新しい例外を発生させることができます。ネストされた try-catch ステップは次のとおりです。 1. 外側の try-catch ブロックは、内側の例外ハンドラーによってスローされた例外を含むすべての例外を処理します。 2. 内部の try-catch ブロックは特定のタイプの例外を処理し、スコープ外の例外が発生した場合、制御は外部例外ハンドラーに渡されます。

STL コンテナを反復するには、コンテナの begin() 関数と end() 関数を使用してイテレータ範囲を取得できます。 ベクトル: for ループを使用してイテレータ範囲を反復します。リンク リスト: next() メンバー関数を使用して、リンク リストの要素を移動します。マッピング: キーと値のイテレータを取得し、for ループを使用してそれを走査します。

C++ テンプレートの継承により、テンプレート派生クラスが基本クラス テンプレートのコードと機能を再利用できるようになり、コア ロジックは同じだが特定の動作が異なるクラスを作成するのに適しています。テンプレート継承の構文は次のとおりです: templateclassDerived:publicBase{}。例: templateclassBase{};templateclassDerived:publicBase{};。実際のケース: 派生クラス Derived を作成し、基本クラス Base のカウント関数を継承し、現在のカウントを出力する printCount メソッドを追加しました。

エラーの原因とソリューションPECLを使用してDocker環境に拡張機能をインストールする場合、Docker環境を使用するときに、いくつかの頭痛に遭遇します...

C++ STL コンテナ内の要素にアクセスするにはどうすればよいですか?これを行うには、いくつかの方法があります。 コンテナを走査する: イテレータを使用する 範囲ベースの for ループを使用して、特定の要素にアクセスする: インデックスを使用する (添字演算子 []) キーを使用する (std::map または std::unowned_map)

Cでは、文字列でCharタイプが使用されます。1。単一の文字を保存します。 2。配列を使用して文字列を表し、ヌルターミネーターで終了します。 3。文字列操作関数を介して動作します。 4.キーボードから文字列を読み取りまたは出力します。
