ホームページ バックエンド開発 Python チュートリアル Python利用多进程将大量数据放入有限内存的教程

Python利用多进程将大量数据放入有限内存的教程

Jun 06, 2016 am 11:23 AM
python ビッグデータ

简介

这是一篇有关如何将大量的数据放入有限的内存中的简略教程。

与客户工作时,有时会发现他们的数据库实际上只是一个csv或Excel文件仓库,你只能将就着用,经常需要在不更新他们的数据仓库的情况下完成工作。大部分情况下,如果将这些文件存储在一个简单的数据库框架中或许更好,但时间可能不允许。这种方法对时间、机器硬件和所处环境都有要求。

下面介绍一个很好的例子:假设有一堆表格(没有使用Neo4j、MongoDB或其他类型的数据库,仅仅使用csvs、tsvs等格式存储的表格),如果将所有表格组合在一起,得到的数据帧太大,无法放入内存。所以第一个想法是:将其拆分成不同的部分,逐个存储。这个方案看起来不错,但处理起来很慢。除非我们使用多核处理器。
目标

这里的目标是从所有职位中(大约1万个),找出相关的的职位。将这些职位与政府给的职位代码组合起来。接着将组合的结果与对应的州(行政单位)信息组合起来。然后用通过word2vec生成的属性信息在我们的客户的管道中增强已有的属性。

这个任务要求在短时间内完成,谁也不愿意等待。想象一下,这就像在不使用标准的关系型数据库的情况下进行多个表的连接。
数据

201541105411439.jpg (1274×406)

示例脚本

下面的是一个示例脚本,展示了如何使用multiprocessing来在有限的内存空间中加速操作过程。脚本的第一部分是和特定任务相关的,可以自由跳过。请着重关注第二部分,这里侧重的是multiprocessing引擎。

#import the necessary packages
import pandas as pd
import us
import numpy as np
from multiprocessing import Pool,cpu_count,Queue,Manager
 
# the data in one particular column was number in the form that horrible excel version
# of a number where '12000' is '12,000' with that beautiful useless comma in there.
# did I mention I excel bothers me?
# instead of converting the number right away, we only convert them when we need to
def median_maker(column):
  return np.median([int(x.replace(',','')) for x in column])
 
# dictionary_of_dataframes contains a dataframe with information for each title; e.g title is 'Data Scientist'
# related_title_score_df is the dataframe of information for the title; columns = ['title','score']
### where title is a similar_title and score is how closely the two are related, e.g. 'Data Analyst', 0.871
# code_title_df contains columns ['code','title']
# oes_data_df is a HUGE dataframe with all of the Bureau of Labor Statistics(BLS) data for a given time period (YAY FREE DATA, BOO BAD CENSUS DATA!)
 
def job_title_location_matcher(title,location):
  try:
    related_title_score_df = dictionary_of_dataframes[title]
    # we limit dataframe1 to only those related_titles that are above
    # a previously established threshold
    related_title_score_df = related_title_score_df[title_score_df['score']>80]
 
    #we merge the related titles with another table and its codes
    codes_relTitles_scores = pd.merge(code_title_df,related_title_score_df)
    codes_relTitles_scores = codes_relTitles_scores.drop_duplicates()
 
    # merge the two dataframes by the codes
    merged_df = pd.merge(codes_relTitles_scores, oes_data_df)
    #limit the BLS data to the state we want
    all_merged = merged_df[merged_df['area_title']==str(us.states.lookup(location).name)]
 
    #calculate some summary statistics for the time we want
    group_med_emp,group_mean,group_pct10,group_pct25,group_median,group_pct75,group_pct90 = all_merged[['tot_emp','a_mean','a_pct10','a_pct25','a_median','a_pct75','a_pct90']].apply(median_maker)
    row = [title,location,group_med_emp,group_mean,group_pct10,group_pct25, group_median, group_pct75, group_pct90]
    #convert it all to strings so we can combine them all when writing to file
    row_string = [str(x) for x in row]
    return row_string
  except:
    # if it doesnt work for a particular title/state just throw it out, there are enough to make this insignificant
    'do nothing'

ログイン後にコピー

这里发生了神奇的事情:

#runs the function and puts the answers in the queue
def worker(row, q):
    ans = job_title_location_matcher(row[0],row[1])
    q.put(ans)
 
# this writes to the file while there are still things that could be in the queue
# this allows for multiple processes to write to the same file without blocking eachother
def listener(q):
  f = open(filename,'wb')
  while 1:
    m = q.get()
    if m =='kill':
        break
    f.write(','.join(m) + 'n')
    f.flush()
  f.close()
 
def main():
  #load all your data, then throw out all unnecessary tables/columns
  filename = 'skill_TEST_POOL.txt'
 
  #sets up the necessary multiprocessing tasks
  manager = Manager()
  q = manager.Queue()
  pool = Pool(cpu_count() + 2)
  watcher = pool.map_async(listener,(q,))
 
  jobs = []
  #titles_states is a dataframe of millions of job titles and states they were found in
  for i in titles_states.iloc:
    job = pool.map_async(worker, (i, q))
    jobs.append(job)
 
  for job in jobs:
    job.get()
  q.put('kill')
  pool.close()
  pool.join()
 
if __name__ == "__main__":
  main()

ログイン後にコピー

由于每个数据帧的大小都不同(总共约有100Gb),所以将所有数据都放入内存是不可能的。通过将最终的数据帧逐行写入内存,但从来不在内存中存储完整的数据帧。我们可以完成所有的计算和组合任务。这里的“标准方法”是,我们可以仅仅在“job_title_location_matcher”的末尾编写一个“write_line”方法,但这样每次只会处理一个实例。根据我们需要处理的职位/州的数量,这大概需要2天的时间。而通过multiprocessing,只需2个小时。

虽然读者可能接触不到本教程处理的任务环境,但通过multiprocessing,可以突破许多计算机硬件的限制。本例的工作环境是c3.8xl ubuntu ec2,硬件为32核60Gb内存(虽然这个内存很大,但还是无法一次性放入所有数据)。这里的关键之处是我们在60Gb的内存的机器上有效的处理了约100Gb的数据,同时速度提升了约25倍。通过multiprocessing在多核机器上自动处理大规模的进程,可以有效提高机器的利用率。也许有些读者已经知道了这个方法,但对于其他人,可以通过multiprocessing能带来非常大的收益。顺便说一句,这部分是skill assets in the job-market这篇博文的延续。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

XMLをPDFに変換できるモバイルアプリはありますか? XMLをPDFに変換できるモバイルアプリはありますか? Apr 02, 2025 pm 08:54 PM

XMLをPDFに直接変換するアプリケーションは、2つの根本的に異なる形式であるため、見つかりません。 XMLはデータの保存に使用され、PDFはドキュメントを表示するために使用されます。変換を完了するには、PythonやReportLabなどのプログラミング言語とライブラリを使用して、XMLデータを解析してPDFドキュメントを生成できます。

携帯電話のXMLファイルをPDFに変換する方法は? 携帯電話のXMLファイルをPDFに変換する方法は? Apr 02, 2025 pm 10:12 PM

単一のアプリケーションで携帯電話でXMLからPDF変換を直接完了することは不可能です。クラウドサービスを使用する必要があります。クラウドサービスは、2つのステップで達成できます。1。XMLをクラウド内のPDFに変換し、2。携帯電話の変換されたPDFファイルにアクセスまたはダウンロードします。

携帯電話でXMLをPDFに変換するとき、変換速度は高速ですか? 携帯電話でXMLをPDFに変換するとき、変換速度は高速ですか? Apr 02, 2025 pm 10:09 PM

Mobile XMLからPDFへの速度は、次の要因に依存します。XML構造の複雑さです。モバイルハードウェア構成変換方法(ライブラリ、アルゴリズム)コードの品質最適化方法(効率的なライブラリ、アルゴリズムの最適化、キャッシュデータ、およびマルチスレッドの利用)。全体として、絶対的な答えはなく、特定の状況に従って最適化する必要があります。

画像に変換されたXMLのサイズを制御する方法は? 画像に変換されたXMLのサイズを制御する方法は? Apr 02, 2025 pm 07:24 PM

XMLを介して画像を生成するには、XMLのメタデータ(サイズ、色)に基づいて画像を生成するために、ブリッジとしてグラフライブラリ(枕やJFreechartなど)を使用する必要があります。画像のサイズを制御するための鍵は、< width>の値を調整することです。および< height> XMLのタグ。ただし、実際のアプリケーションでは、XML構造の複雑さ、グラフ描画の細かさ、画像生成の速度とメモリ消費の速度、および画像形式の選択はすべて、生成された画像サイズに影響を与えます。したがって、グラフィックライブラリに熟練したXML構造を深く理解し、最適化アルゴリズムや画像形式の選択などの要因を考慮する必要があります。

推奨されるXMLフォーマットツール 推奨されるXMLフォーマットツール Apr 02, 2025 pm 09:03 PM

XMLフォーマットツールは、読みやすさと理解を向上させるために、ルールに従ってコードを入力できます。ツールを選択するときは、カスタマイズ機能、特別な状況の処理、パフォーマンス、使いやすさに注意してください。一般的に使用されるツールタイプには、オンラインツール、IDEプラグイン、コマンドラインツールが含まれます。

C言語合計の機能は何ですか? C言語合計の機能は何ですか? Apr 03, 2025 pm 02:21 PM

C言語に組み込みの合計機能はないため、自分で書く必要があります。合計は、配列を通過して要素を蓄積することで達成できます。ループバージョン:合計は、ループとアレイの長さを使用して計算されます。ポインターバージョン:ポインターを使用してアレイ要素を指し示し、効率的な合計が自己概要ポインターを通じて達成されます。アレイバージョンを動的に割り当てます:[アレイ]を動的に割り当ててメモリを自分で管理し、メモリの漏れを防ぐために割り当てられたメモリが解放されます。

XML形式を開く方法 XML形式を開く方法 Apr 02, 2025 pm 09:00 PM

ほとんどのテキストエディターを使用して、XMLファイルを開きます。より直感的なツリーディスプレイが必要な場合は、酸素XMLエディターやXMLSPYなどのXMLエディターを使用できます。プログラムでXMLデータを処理する場合、プログラミング言語(Pythonなど)やXMLライブラリ(XML.ETREE.ELEMENTTREEなど)を使用して解析する必要があります。

XMLをPDFに変換できるモバイルアプリはありますか? XMLをPDFに変換できるモバイルアプリはありますか? Apr 02, 2025 pm 09:45 PM

XML構造が柔軟で多様であるため、すべてのXMLファイルをPDFSに変換できるアプリはありません。 XMLのPDFへのコアは、データ構造をページレイアウトに変換することです。これには、XMLの解析とPDFの生成が必要です。一般的な方法には、ElementTreeなどのPythonライブラリを使用してXMLを解析し、ReportLabライブラリを使用してPDFを生成することが含まれます。複雑なXMLの場合、XSLT変換構造を使用する必要がある場合があります。パフォーマンスを最適化するときは、マルチスレッドまたはマルチプロセスの使用を検討し、適切なライブラリを選択します。

See all articles