Python中的Matplotlib模块入门教程

Jun 06, 2016 am 11:25 AM
python

1 关于 Matplotlib 模块

Matplotlib 是一个由 John Hunter 等开发的,用以绘制二维图形的 Python 模块。它利用了 Python 下的数值计算模块 Numeric 及 Numarray,克隆了许多 Matlab 中的函数, 用以帮助用户轻松地获得高质量的二维图形。Matplotlib 可以绘制多种形式的图形包括普通的线图,直方图,饼图,散点图以及误差线图等;可以比较方便的定制图形的各种属性比如图线的类型,颜色,粗细,字体的大小等;它能够很好地支持一部分 TeX 排版命令,可以比较美观地显示图形中的数学公式。Matplotlib 掌握起来也很容易,由于 Matplotlib 使用的大部分函数都与 Matlab 中对应的函数同名,且各种参数的含义,使用方法也一致,这就使得熟悉 Matlab 的用户使用起来感到得心应手。对那些不熟悉的 Matlab 的用户而言,这些函数的意义往往也是一目了然的,因此只要花很少的时间就可以掌握。

Matplotlib 目前包含了37个不同的模块, 如 matlab, mathtext, finance, dates

等等,其中与绘图关系最直接的是 matlab 模块。可以用下面的命令装载并查看它提供的函数

>>> import matplotlib.matlab
>>> dir(matplotlib.matlab)

ログイン後にコピー

如果要了解模块中某个函数的使用方法,可以使用 help 命令。如下面的命令

>>> help(legend)
>>> help(plot)

ログイン後にコピー

会返回 legend 和 plot 这两个函数的信息。

本文拟通过一些实例来说明 matplotlib 的这些主要特点。相信通过阅读这些例子,您能对 Matplotlib 的使用有一个基本的了解。

2 绘制一组幂函数

先从一个简单的例子开始讨论。假设要在一个图形中显示一组幂函数。这组幂函数的基不同,分别为10,自然对数 e 和2。可以用如下 Python 脚本去描绘这组曲线,生成的图形如图1所示。

  from matplotlib.matlab import * 
 
 x = linspace(-4, 4, 200) 
 f1 = power(10, x) 
 f2 = power(e, x) 
 f3 = power(2, x) 
 
 plot(x, f1, 'r', x, f2, 'b', x, f3, 'g', linewidth=2) 
 axis([-4, 4, -0.5, 8])
 text(1, 7.5, r'$10^x$', fontsize=16)
 text(2.2, 7.5, r'$e^x$', fontsize=16)
 text(3.2, 7.5, r'$2^x$', fonsize=16)
 title('A simple example', fontsize=16)
 
 savefig('power.png', dpi=75)
 show()

ログイン後にコピー

图1: 一组幂函数

2015415102134104.png (600×450)

程序的第一行装载了 matlab 模块。接下来的几行语句(至 savefig 之前)好像是在运行 Matlab 程序,因为 linspace, power, plot,axis, text, title 这些函数在 Matlab 中也存在。这个例子展示了 Matplotlib 中几个比较常用的绘图函数,如 plot,axis,title 等的用法。其中 plot 是一个功能十分强大的函数, 通过改变它的参数选项,可以灵活地修改图形的各种属性,比如选用的线型,颜色,宽度等。

显示图形中的数学公式

Matplotlib 可以支持一部分 TeX 的排版指令,因此用户在绘制含有数学公式的图形时会感到很方便并且可以得到比较满意的显示效果,所需要的仅仅是一些 TeX 的排版知识。下面的这个例子显示了如何在图形的不同位置上, 如坐标轴标签,图形的标题以及图形中适当的位置处,显示数学公式。相应的 Python 程序如下, 生成的图形见图2。

from matplotlib.matlab import *
def f(x, c):
m1 = sin(2*pi*x)
m2 = exp(-c*x)
return multiply(m1, m2)
x = linspace(0, 4, 100)
sigma = 0.5
plot(x, f(x, sigma), 'r', linewidth=2)
xlabel(r'$\rm{time} \ t$', fontsize=16)
ylabel(r'$\rm{Amplitude} \ f(x)$', fontsize=16)
title(r'$f(x) \ \rm{is \ damping \ with} \ x$', fontsize=16)
text(2.0, 0.5, r'$f(x) = \rm{sin}(2 \pi x^2) e^{\sigma x}$', fontsize=20)
savefig('latex.png', dpi=75)
show()

图2: 图形中数学公式的显示

2015415102236845.png (600×450)

从程序中可以看出,在 Matplotlib 中进行有关数学公式的排版是很简单的。与 TeX 排版时的约定一样,要插入的公式部分由一对美元符号 $ 来进行标识,而具体的排版命令与 TeX 一样。在任何可以显示文本的地方(如轴的标签,标题处等)都可以插入需要的公式。需要注意的是,数学公式所在的字符串开始之处有一个标记 r,表示该字符串是一个 raw string。这是因为排版公式时,字符串所包含的内容必须按照 TeX 的规范,而不是其他的规范,来进行解析。所以使用 raw string 可以避免其它规则解释字符串中某些特殊字符所带来的歧义。从生成的图形可以看到,公式显示的效果是比较美观的。

3 绘制其他格式的图形

除了常用的线图,Matplotlib 还可以绘制其他种类的图形,如直方图,饼图,误差线图等等。下面是一个处理实验数据的例子。它用直方图的形式比较了实际测量电流和理论计算电流,同时还显示了测量的误差分布情况。程序首先读取实验数据 current.dat,获得数据后利用函数 bar 进行绘图。

from matplotlib.matlab import * 
filename = "d:\\wei\\exp\\current.dat"
X = load(filename)
dp = X[:, 0]
i_mea = X[:, 1]
i_mea_err = X[:, 2]
i_cal = X[:, 3]
i_cal_err = X[:, 4]
width = 3
h1 = bar(dp, i_mea, width, color='r', yerr=i_mea_err)
h2 = bar(dp+width, i_cal, width, color='b', yerr=i_cal_err)
xlabel('Particle diameter (nm)', fontsize=16)
xticks(dp+width, dp)
ylabel('Signal current (nA)', fontsize=16)
title('Measured current vs. calculated current')
legend((h1[0], h2[0]), ('measured current', 'calculated current'), loc=2)
savefig('current.png', dpi=75)
show()

ログイン後にコピー

图3 :测量电流 vs. 计算电流

2015415102309394.png (600×450)

从程序中可以看出,函数 load 极大地方便了数据文件的读取工作(不需要自己写代码来处理数据文件了),它的输出直接被传递至函数 bar 中,进而完成直方图和误差线图的绘制。

4 GLP 集合计算结果的可视化

Python 是一种比较适合用来进行科学计算的脚本语言,如果利用了 Numeric 及 Numarray 模块,它的计算能力还能得到进一步的增强。 Matplotlib 也充分利用了这两个模块,可以高质量地完成计算结果可视化的工作。下面是一个计算和显示两维好格子点 GLP (Good Lattice Point Set)集合的例子。 GLP 集合是一种用算法产生的伪随机数的集合,它在一些优化计算中很有用,详细的介绍可以在参考文献里找到。下面的 Python 程序先定义了一个函数 glp(n1, n2) 用以产生需要的 GLP 集合, 接着利用 Matplotlib 来显示它的分布情况(应该是均匀分布的)。

# A two dimensional GLP set 
# with n1=377, n2=610
from matplotlib.matlab import *
def glp(n1, n2):
 q = zeros((2, n2), Float)
 h1 = 1; h2 = n1
 for i in arange(n2-1):
 q[0][ i] = (fmod(h1*(i+1), n2)-0.5)/n2
 q[1][ i] = (fmod(h2*(i+1), n2)-0.5)/n2
 q[0][n2-1] = (n2-0.5)/n2
 q[1][n2-1] = (n2-0.5)/n2
 return q
n1 = 377; n2 = 610
q = glp(n1, n2)
x = q[0, :]
y = q[1, :]
plot(x, y, 'r.', linewidth=2)
axis([0, 1, 0, 1])
title(r'$\rm{GLP \ set \ with} \ n_1 = 377, \ n_2 = 610$')
savefig('glp.png', dpi = 75)
show()

ログイン後にコピー

图4: GLP 集合的分布

2015415102338194.png (600×450)

最初我们是用 Matlab 来完成这个工作的,现在用 Python 来实现一样很简洁。程序中函数 glp 的实现主要是利用了模快 Numeric,计算得到的结果用 plot 函数直接加以显示,十分方便。这个例子(包括上一个例子)显示了,在利用 Python 进行某些科学及工程计算时,Matplotlib 往往能简洁高效地完成计算结果可视化的工作。

5 工作模式及图形的输出方式

最后简单的介绍一下 Matplotlib 的工作模式以及输出图形的方式。Matplotlib 有两种工作模式:交互模式 (interactive mode) 以及批处理模式 (batch mode)。很容易理解这两种模式的差别。第一种模式就是在某个 Python Shell 的提示符下逐个运行绘图的命令。

第二种模式是先把绘图命令写成一个脚本文件然后在适当的环境中执行这个文件。 最终图形的输出也有两种方式,即 GUI 输出方式和非 GUI 输出方式。简单地说,GUI 方式的输出是把产生的图形直接显示在屏幕上;而非 GUI 方式的输出则是把图形保存为某种格式的文件,比如ps,png格式的文件。不论哪一种方式都与系统使用的 backend 有关 (backend 可以理解为后端的绘图引擎)。与 GUI方式输出有关的 backend 包括 WxPython, TkAgg, Tkinter 等。而与非 GUI 方式有关的 backend 包括 GD, PS,Paint 等。下图总结了目前 Matplotlib 支持的主要backend。
图5: Matplotlib 支持的主要 backend

2015415102405367.gif (711×233)

用户可以根据自己的实际需要选用其中的某种输出方式,当然也可以两种同时使用。以上的几个例子都是同时使用了这两种方式。以上几个 Python 脚本的最后一行命令 show 负责把图形在屏幕上显示出来,而命令 savefig 会把图形保存为相应格式的文件,目前缺省的输出格式是 png 格式。

6 总结

作为一个仍在进行中的项目,Matplotlib 充分利用了 Python 下的 Numeric(Numarray) 模块,提供了一种利用 Python 进行数据可视化的解决方案,进一步加强了 Python 用来进行科学计算的能力。Matplotlib 简单易学,它克隆了众多 Matlab 中的函数,这会让了解 Matlab 的用户受益不少。其他的特点还包括能够绘制多种类型的图形,可以简单灵活对图形的各种属性进行修改,能比较美观地显示图形中的数学公式。与其他的一些绘图程序相比,如 Gnuplot,Matplotlib 的一个吸引人之处就是输出图形的质量较高。不足之处是 Matplotlib 的功能目前还不是很完善, 比如目前还不能支持三维绘图,对 TeX 排版的支持还不充分等等。不过考虑到它是一个还在进行中的项目,这些就不应求全责备了。总的说来,如果您需要一种可视化的工具,并且希望它能有高质量的输出效果,那么 Python 的 Matplotlib 模块应该是一个值得考虑的选择。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

XMLをPDFに変換できるモバイルアプリはありますか? XMLをPDFに変換できるモバイルアプリはありますか? Apr 02, 2025 pm 08:54 PM

XMLをPDFに直接変換するアプリケーションは、2つの根本的に異なる形式であるため、見つかりません。 XMLはデータの保存に使用され、PDFはドキュメントを表示するために使用されます。変換を完了するには、PythonやReportLabなどのプログラミング言語とライブラリを使用して、XMLデータを解析してPDFドキュメントを生成できます。

画像に変換されたXMLのサイズを制御する方法は? 画像に変換されたXMLのサイズを制御する方法は? Apr 02, 2025 pm 07:24 PM

XMLを介して画像を生成するには、XMLのメタデータ(サイズ、色)に基づいて画像を生成するために、ブリッジとしてグラフライブラリ(枕やJFreechartなど)を使用する必要があります。画像のサイズを制御するための鍵は、< width>の値を調整することです。および< height> XMLのタグ。ただし、実際のアプリケーションでは、XML構造の複雑さ、グラフ描画の細かさ、画像生成の速度とメモリ消費の速度、および画像形式の選択はすべて、生成された画像サイズに影響を与えます。したがって、グラフィックライブラリに熟練したXML構造を深く理解し、最適化アルゴリズムや画像形式の選択などの要因を考慮する必要があります。

携帯電話でXMLをPDFに変換するとき、変換速度は高速ですか? 携帯電話でXMLをPDFに変換するとき、変換速度は高速ですか? Apr 02, 2025 pm 10:09 PM

Mobile XMLからPDFへの速度は、次の要因に依存します。XML構造の複雑さです。モバイルハードウェア構成変換方法(ライブラリ、アルゴリズム)コードの品質最適化方法(効率的なライブラリ、アルゴリズムの最適化、キャッシュデータ、およびマルチスレッドの利用)。全体として、絶対的な答えはなく、特定の状況に従って最適化する必要があります。

XMLをPDFに変換できるモバイルアプリはありますか? XMLをPDFに変換できるモバイルアプリはありますか? Apr 02, 2025 pm 09:45 PM

XML構造が柔軟で多様であるため、すべてのXMLファイルをPDFSに変換できるアプリはありません。 XMLのPDFへのコアは、データ構造をページレイアウトに変換することです。これには、XMLの解析とPDFの生成が必要です。一般的な方法には、ElementTreeなどのPythonライブラリを使用してXMLを解析し、ReportLabライブラリを使用してPDFを生成することが含まれます。複雑なXMLの場合、XSLT変換構造を使用する必要がある場合があります。パフォーマンスを最適化するときは、マルチスレッドまたはマルチプロセスの使用を検討し、適切なライブラリを選択します。

携帯電話のXMLファイルをPDFに変換する方法は? 携帯電話のXMLファイルをPDFに変換する方法は? Apr 02, 2025 pm 10:12 PM

単一のアプリケーションで携帯電話でXMLからPDF変換を直接完了することは不可能です。クラウドサービスを使用する必要があります。クラウドサービスは、2つのステップで達成できます。1。XMLをクラウド内のPDFに変換し、2。携帯電話の変換されたPDFファイルにアクセスまたはダウンロードします。

XMLでノードコンテンツを変更する方法 XMLでノードコンテンツを変更する方法 Apr 02, 2025 pm 07:21 PM

XMLノードコンテンツの変更スキル:1。ElementTreeモジュールを使用して、ノード(findall()、find())を見つけます。 2。テキスト属性を変更します。 3. Xpath式を使用して、それらを正確に見つけます。 4。エンコード、名前空間、例外処理を検討します。 5。パフォーマンスの最適化に注意してください(繰り返しのトラバーサルを避けてください)

XMLを画像に変換するプロセスは何ですか? XMLを画像に変換するプロセスは何ですか? Apr 02, 2025 pm 08:24 PM

XML画像を変換するには、最初にXMLデータ構造を決定し、次に適切なグラフィカルライブラリ(PythonのMatplotlibなど)とメソッドを選択し、データ構造に基づいて視覚化戦略を選択し、データのボリュームと画像形式を検討し、バッチ処理を実行するか、効率的なライブラリを使用して、最終的にPNG、JPEG、またはSVGに応じて保存します。

XML形式をHTMLに変換する方法 XML形式をHTMLに変換する方法 Apr 02, 2025 pm 08:57 PM

XMLをHTMLに変換する正しい方法は、パーサーを使用してXML構造データをツリー構造に抽出することです。抽出されたデータに基づいてHTML構造を構築します。非効率的でエラーが発生しやすい文字列操作を避けてください。

See all articles