Python实现单词拼写检查
这几天在翻旧代码时发现以前写的注释部分有很多单词拼写错误,这些单词错得不算离谱,应该可以用工具自动纠错绝大部分。用 Python 写个拼写检查脚本很容易,如果能很好利用 aspell/ispell 这些现成的小工具就更简单了。
要点
1、输入一个拼写错误的单词,调用 aspell -a 后得到一些候选正确单词,然后用距离编辑进一步嗮选出更精确的词。比如运行 aspell -a,输入 ‘hella' 后得到如下结果:
hell, Helli, hello, heal, Heall, he'll, hells, Heller, Ella, Hall, Hill, Hull, hall, heel, hill, hula, hull, Helga, Helsa, Bella, Della, Mella, Sella, fella, Halli, Hally, Hilly, Holli, Holly, hallo, hilly, holly, hullo, Hell's, hell's
2、什么是距离编辑(Edit-Distance,也叫 Levenshtein algorithm)呢?就是说给定一个单词,通过多次插入、删除、交换、替换单字符的操作后枚举出所有可能的正确拼写,比如输入 ‘hella',经过多次插入、删除、交换、替换单字符的操作后变成:
‘helkla', ‘hjlla', ‘hylla', ‘hellma', ‘khella', ‘iella', ‘helhla', ‘hellag', ‘hela', ‘vhella', ‘hhella', ‘hell', ‘heglla', ‘hvlla', ‘hellaa', ‘ghella', ‘hellar', ‘heslla', ‘lhella', ‘helpa', ‘hello', …
3、综合上面2个集合的结果,并且考虑到一些理论知识可以提高拼写检查的准确度,比如一般来说写错单词都是无意的或者误打,完全错的单词可能性很小,而且单词的第一个字母一般不会拼错。所以可以在上面集合里去掉第一个字母不符合的单词,比如:'Sella', ‘Mella', khella', ‘iella' 等,这里 VPSee 不删除单词,而把这些单词从队列里取出来放到队列最后(优先级降低),所以实在匹配不了以 h 开头的单词才去匹配那些以其他字母开头的单词。
4、程序中用到了外部工具 aspell,如何在 Python 里捕捉外部程序的输入和输出以便在 Python 程序里处理这些输入和输出呢?Python 2.4 以后引入了 subprocess 模块,可以用 subprocess.Popen 来处理。
5、Google 大牛 Peter Norvig 写了一篇 How to Write a Spelling Corrector 很值得一看,大牛就是大牛,21行 Python 就解决拼写问题,而且还不用外部工具,只需要事先读入一个词典文件。本文程序的 edits1 函数就是从牛人家那里 copy 的。
代码
#!/usr/bin/python # A simple spell checker import os, sys, subprocess, signal alphabet = 'abcdefghijklmnopqrstuvwxyz' def found(word, args, cwd = None, shell = True): child = subprocess.Popen(args, shell = shell, stdin = subprocess.PIPE, stdout = subprocess.PIPE, cwd = cwd, universal_newlines = True) child.stdout.readline() (stdout, stderr) = child.communicate(word) if ": " in stdout: # remove \n\n stdout = stdout.rstrip("\n") # remove left part until : left, candidates = stdout.split(": ", 1) candidates = candidates.split(", ") # making an error on the first letter of a word is less # probable, so we remove those candidates and append them # to the tail of queue, make them less priority for item in candidates: if item[0] != word[0]: candidates.remove(item) candidates.append(item) return candidates else: return None # copy from http://norvig.com/spell-correct.html def edits1(word): n = len(word) return set([word[0:i]+word[i+1:] for i in range(n)] + [word[0:i]+word[i+1]+word[i]+word[i+2:] for i in range(n-1)] + [word[0:i]+c+word[i+1:] for i in range(n) for c in alphabet] + [word[0:i]+c+word[i:] for i in range(n+1) for c in alphabet]) def correct(word): candidates1 = found(word, 'aspell -a') if not candidates1: print "no suggestion" return candidates2 = edits1(word) candidates = [] for word in candidates1: if word in candidates2: candidates.append(word) if not candidates: print "suggestion: %s" % candidates1[0] else: print "suggestion: %s" % max(candidates) def signal_handler(signal, frame): sys.exit(0) if __name__ == '__main__': signal.signal(signal.SIGINT, signal_handler) while True: input = raw_input() correct(input)
更简单的方法
当然直接在程序里调用相关模块最简单了,有个叫做 PyEnchant 的库支持拼写检查,安装 PyEnchant 和 Enchant 后就可以直接在 Python 程序里 import 了:
>>> import enchant >>> d = enchant.Dict("en_US") >>> d.check("Hello") True >>> d.check("Helo") False >>> d.suggest("Helo") ['He lo', 'He-lo', 'Hello', 'Helot', 'Help', 'Halo', 'Hell', 'Held', 'Helm', 'Hero', "He'll"] >>>

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Mobile XMLからPDFへの速度は、次の要因に依存します。XML構造の複雑さです。モバイルハードウェア構成変換方法(ライブラリ、アルゴリズム)コードの品質最適化方法(効率的なライブラリ、アルゴリズムの最適化、キャッシュデータ、およびマルチスレッドの利用)。全体として、絶対的な答えはなく、特定の状況に従って最適化する必要があります。

単一のアプリケーションで携帯電話でXMLからPDF変換を直接完了することは不可能です。クラウドサービスを使用する必要があります。クラウドサービスは、2つのステップで達成できます。1。XMLをクラウド内のPDFに変換し、2。携帯電話の変換されたPDFファイルにアクセスまたはダウンロードします。

C言語に組み込みの合計機能はないため、自分で書く必要があります。合計は、配列を通過して要素を蓄積することで達成できます。ループバージョン:合計は、ループとアレイの長さを使用して計算されます。ポインターバージョン:ポインターを使用してアレイ要素を指し示し、効率的な合計が自己概要ポインターを通じて達成されます。アレイバージョンを動的に割り当てます:[アレイ]を動的に割り当ててメモリを自分で管理し、メモリの漏れを防ぐために割り当てられたメモリが解放されます。

XMLをPDFに直接変換するアプリケーションは、2つの根本的に異なる形式であるため、見つかりません。 XMLはデータの保存に使用され、PDFはドキュメントを表示するために使用されます。変換を完了するには、PythonやReportLabなどのプログラミング言語とライブラリを使用して、XMLデータを解析してPDFドキュメントを生成できます。

XMLは、XSLTコンバーターまたは画像ライブラリを使用して画像に変換できます。 XSLTコンバーター:XSLTプロセッサとスタイルシートを使用して、XMLを画像に変換します。画像ライブラリ:PILやImageMagickなどのライブラリを使用して、形状やテキストの描画などのXMLデータから画像を作成します。

XMLフォーマットツールは、読みやすさと理解を向上させるために、ルールに従ってコードを入力できます。ツールを選択するときは、カスタマイズ機能、特別な状況の処理、パフォーマンス、使いやすさに注意してください。一般的に使用されるツールタイプには、オンラインツール、IDEプラグイン、コマンドラインツールが含まれます。

XML画像を変換するには、最初にXMLデータ構造を決定し、次に適切なグラフィカルライブラリ(PythonのMatplotlibなど)とメソッドを選択し、データ構造に基づいて視覚化戦略を選択し、データのボリュームと画像形式を検討し、バッチ処理を実行するか、効率的なライブラリを使用して、最終的にPNG、JPEG、またはSVGに応じて保存します。

XML構造が柔軟で多様であるため、すべてのXMLファイルをPDFSに変換できるアプリはありません。 XMLのPDFへのコアは、データ構造をページレイアウトに変換することです。これには、XMLの解析とPDFの生成が必要です。一般的な方法には、ElementTreeなどのPythonライブラリを使用してXMLを解析し、ReportLabライブラリを使用してPDFを生成することが含まれます。複雑なXMLの場合、XSLT変換構造を使用する必要がある場合があります。パフォーマンスを最適化するときは、マルチスレッドまたはマルチプロセスの使用を検討し、適切なライブラリを選択します。
