python k-近邻算法实例分享

Jun 06, 2016 am 11:31 AM
python

简单说明

这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了。

简称kNN。

已知:训练集,以及每个训练集的标签。

接下来:和训练集中的数据对比,计算最相似的k个距离。选择相似数据中最多的那个分类。作为新数据的分类。

python实例

代码如下:


# -*- coding: cp936 -*-

#win系统中应用cp936编码,linux中最好还是utf-8比较好。
from numpy import *#引入科学计算包
import operator #经典python函数库。运算符模块。

#创建数据集
def createDataSet():
    group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels=['A','A','B','B']
    return group,labels

#算法核心
#inX:用于分类的输入向量。即将对其进行分类。
#dataSet:训练样本集
#labels:标签向量
def classfy0(inX,dataSet,labels,k):
    #距离计算
    dataSetSize =dataSet.shape[0]#得到数组的行数。即知道有几个训练数据
    diffMat     =tile(inX,(dataSetSize,1))-dataSet#tile:numpy中的函数。tile将原来的一个数组,扩充成了4个一样的数组。diffMat得到了目标与训练数值之间的差值。
    sqDiffMat   =diffMat**2#各个元素分别平方
    sqDistances =sqDiffMat.sum(axis=1)#对应列相乘,即得到了每一个距离的平方
    distances   =sqDistances**0.5#开方,得到距离。
    sortedDistIndicies=distances.argsort()#升序排列
    #选择距离最小的k个点。
    classCount={}
    for i in range(k):
        voteIlabel=labels[sortedDistIndicies[i]]
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
    #排序
    sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

意外收获

把自己写的模块加入到python默认就有的搜索路径:在python/lib/-packages目录下建立一个 xxx.pth的文件,写入自己写的模块所在的路径即可

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットな記事タグ

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

テンプレートのメリットとデメリットは何ですか? テンプレートのメリットとデメリットは何ですか? May 08, 2024 pm 03:51 PM

テンプレートのメリットとデメリットは何ですか?

Google AI、開発者向けに Gemini 1.5 Pro と Gemma 2 を発表 Google AI、開発者向けに Gemini 1.5 Pro と Gemma 2 を発表 Jul 01, 2024 am 07:22 AM

Google AI、開発者向けに Gemini 1.5 Pro と Gemma 2 を発表

Deepseek Xiaomiをダウンロードする方法 Deepseek Xiaomiをダウンロードする方法 Feb 19, 2025 pm 05:27 PM

Deepseek Xiaomiをダウンロードする方法

わずか 250 ドルで、Hugging Face のテクニカル ディレクターが Llama 3 を段階的に微調整する方法を教えます わずか 250 ドルで、Hugging Face のテクニカル ディレクターが Llama 3 を段階的に微調整する方法を教えます May 06, 2024 pm 03:52 PM

わずか 250 ドルで、Hugging Face のテクニカル ディレクターが Llama 3 を段階的に微調整する方法を教えます

いくつかの .NET オープンソース AI および LLM 関連プロジェクト フレームワークを共有する いくつかの .NET オープンソース AI および LLM 関連プロジェクト フレームワークを共有する May 06, 2024 pm 04:43 PM

いくつかの .NET オープンソース AI および LLM 関連プロジェクト フレームワークを共有する

golang 関数のデバッグと分析の完全ガイド golang 関数のデバッグと分析の完全ガイド May 06, 2024 pm 02:00 PM

golang 関数のデバッグと分析の完全ガイド

どうやって彼にdeepseekに尋ねますか どうやって彼にdeepseekに尋ねますか Feb 19, 2025 pm 04:42 PM

どうやって彼にdeepseekに尋ねますか

評価関数の保存方法 評価関数の保存方法 May 07, 2024 am 01:09 AM

評価関数の保存方法

See all articles