Home > Java > javaTutorial > Detailed analysis of the principle of ThreadPoolExecutor in java (with code)

Detailed analysis of the principle of ThreadPoolExecutor in java (with code)

黄舟
Release: 2017-03-29 10:31:22
Original
1841 people have browsed it

This article mainly introduces relevant information on the principle analysis of ThreadPoolExecutor in java. Friends in need can refer to it

Analysis of the principle of ThreadPoolExecutor in java

Thread poolIntroduction

Java thread pool is a commonly used tool in development. When we have asynchronous and parallel tasks to process, thread pool is often used. Or when implementing a server, you also need to use a thread pool to receive connections and process requests.

Thread pool usage

The thread pool implementation provided in the JDK is located in java.util.concurrent.ThreadPoolExecutor. When in use, the ExecutorService interface is usually used, which provides common methods such as submit, invokeAll, and shutdown.

In terms of thread pool configuration, the Executors class provides some static methods that can provide thread pools for some common scenarios, such as newFixedThreadPool, newCachedThreadPool, newSingleThreadExecutor etc., these methods eventually call the constructor of ThreadPoolExecutor.

ThreadPoolExecutor's constructor containing all parameters is

/**
   * @param corePoolSize the number of threads to keep in the pool, even
   *    if they are idle, unless {@code allowCoreThreadTimeOut} is set
   * @param maximumPoolSize the maximum number of threads to allow in the
   *    pool
   * @param keepAliveTime when the number of threads is greater than
   *    the core, this is the maximum time that excess idle threads
   *    will wait for new tasks before terminating.
   * @param unit the time unit for the {@code keepAliveTime} argument
   * @param workQueue the queue to use for holding tasks before they are
   *    executed. This queue will hold only the {@code Runnable}
   *    tasks submitted by the {@code execute} method.
   * @param threadFactory the factory to use when the executor
   *    creates a new thread
   * @param handler the handler to use when execution is blocked
   *    because the thread bounds and queue capacities are reached
  public ThreadPoolExecutor(int corePoolSize,
               int maximumPoolSize,
               long keepAliveTime,
               TimeUnit unit,
               BlockingQueue<Runnable> workQueue,
               ThreadFactory threadFactory,
               RejectedExecutionHandler handler) {
    if (corePoolSize < 0 ||
      maximumPoolSize <= 0 ||
      maximumPoolSize < corePoolSize ||
      keepAliveTime < 0)
      throw new IllegalArgumentException();
    if (workQueue == null || threadFactory == null || handler == null)
      throw new NullPointerException();
    this.corePoolSize = corePoolSize;
    this.maximumPoolSize = maximumPoolSize;
    this.workQueue = workQueue;
    this.keepAliveTime = unit.toNanos(keepAliveTime);
    this.threadFactory = threadFactory;
    this.handler = handler;
  }
Copy after login
  • corePoolSize sets the number of core threads in the thread pool. When adding a new task, if the number of threads in the thread pool If it is less than corePoolSize, a new thread will be created to perform the task regardless of whether there are currently idle threads.

  • maximunPoolSize is the maximum number of threads allowed in the thread pool

  • workQueue is used to store queued tasks

  • keepAliveTime is the idle timeout time for threads greater than corePoolSize

  • handler is used for task processing when the task escapes and the thread pool is closed. The thread growth strategy of the thread pool is, When the current number of threads is less than corePoolSize, add threads. When the number of threads = corePoolSize and corePoolSize, new threads will only be created when the workQueue cannot store new tasks. Exceeding threads will be destroyed after idle keepAliveTime.

Implementation (based on JDK1.8)

The state saved in ThreadPoolExecutor is

Current thread pool status, including RUNNING, SHUTDOWN, STOP, TIDYING, TERMINATED.

The number of currently effective running threads.

Put these two states into an int variable, the first three digits are the thread pool status, and the last 29 digits are the number of threads.

For example, 0b11100000000000000000000000000001, represents RUNNING, a thread.

Use HashSet to store the worker set. Before accessing the HashSet, you must first obtain the protected mainLock:ReentrantLock

submit, execute

## The execution method of #execute is to first check the current number of workers. If it is less than corePoolSize, try to add a core worker. The thread pool does a lot of testing on maintaining the number of threads and checking status.

public void execute(Runnable command) {
    int c = ctl.get();
    // 如果当期数量小于corePoolSize
    if (workerCountOf(c) < corePoolSize) {
      // 尝试增加worker
      if (addWorker(command, true))
        return;
      c = ctl.get();
    }
    // 如果线程池正在运行并且成功添加到工作队列中
    if (isRunning(c) && workQueue.offer(command)) {
      // 再次检查状态,如果已经关闭则执行拒绝处理
      int recheck = ctl.get();
      if (! isRunning(recheck) && remove(command))
        reject(command);
      // 如果工作线程都down了
      else if (workerCountOf(recheck) == 0)
        addWorker(null, false);
    }
    else if (!addWorker(command, false))
      reject(command);
  }
Copy after login

addWorker method implementation

private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (;;) {
      int c = ctl.get();
      int rs = runStateOf(c);
      // Check if queue empty only if necessary.
      if (rs >= SHUTDOWN &&
        ! (rs == SHUTDOWN &&
          firstTask == null &&
          ! workQueue.isEmpty()))
        return false;
      for (;;) {
        int wc = workerCountOf(c);
        if (wc >= CAPACITY ||
          wc >= (core ? corePoolSize : maximumPoolSize))
          return false;
        if (compareAndIncrementWorkerCount(c))
          break retry;
        c = ctl.get(); // Re-read ctl
        if (runStateOf(c) != rs)
          continue retry;
        // else CAS failed due to workerCount change; retry inner loop
      }
    }
    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
      w = new Worker(firstTask);
      final Thread t = w.thread;
      if (t != null) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
          // Recheck while holding lock.
          // Back out on ThreadFactory failure or if
          // shut down before lock acquired.
          int rs = runStateOf(ctl.get());
          if (rs < SHUTDOWN ||
            (rs == SHUTDOWN && firstTask == null)) {
            if (t.isAlive()) // precheck that t is startable
              throw new IllegalThreadStateException();
            workers.add(w);
            int s = workers.size();
            if (s > largestPoolSize)
              largestPoolSize = s;
            workerAdded = true;
          }
        } finally {
          mainLock.unlock();
        }
        if (workerAdded) {
          // 如果添加成功,则启动该线程,执行Worker的run方法,Worker的run方法执行外部的runWorker(Worker)
          t.start();
          workerStarted = true;
        }
      }
    } finally {
      if (! workerStarted)
        addWorkerFailed(w);
    }
    return workerStarted;
  }
Copy after login

The Worker class inherits AbstractQueuedSynchronizer to obtain the function of synchronous waiting.

private final class Worker
    extends AbstractQueuedSynchronizer
    implements Runnable
  {
    /**
     * This class will never be serialized, but we provide a
     * serialVersionUID to suppress a javac warning.
     */
    private static final long serialVersionUID = 6138294804551838833L;
    /** Thread this worker is running in. Null if factory fails. */
    final Thread thread;
    /** Initial task to run. Possibly null. */
    Runnable firstTask;
    /** Per-thread task counter */
    volatile long completedTasks;
    /**
     * Creates with given first task and thread from ThreadFactory.
     * @param firstTask the first task (null if none)
     */
    Worker(Runnable firstTask) {
      setState(-1); // inhibit interrupts until runWorker
      this.firstTask = firstTask;
      this.thread = getThreadFactory().newThread(this);
    }
    /** Delegates main run loop to outer runWorker */
    public void run() {
      runWorker(this);
    }
    // Lock methods
    //
    // The value 0 represents the unlocked state.
    // The value 1 represents the locked state.
    protected boolean isHeldExclusively() {
      return getState() != 0;
    }
    protected boolean tryAcquire(int unused) {
      if (compareAndSetState(0, 1)) {
        setExclusiveOwnerThread(Thread.currentThread());
        return true;
      }
      return false;
    }
    protected boolean tryRelease(int unused) {
      setExclusiveOwnerThread(null);
      setState(0);
      return true;
    }
    public void lock()    { acquire(1); }
    public boolean tryLock() { return tryAcquire(1); }
    public void unlock()   { release(1); }
    public boolean isLocked() { return isHeldExclusively(); }
    void interruptIfStarted() {
      Thread t;
      if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
        try {
          t.interrupt();
        } catch (SecurityException ignore) {
        }
      }
    }
Copy after login

runWorker (Worker) is the polling execution logic of Worker, which continuously obtains tasks from the work queue and executes them. The Worker needs to be locked before each task is executed to prevent it from being interrupted while executing the task.

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
      while (task != null || (task = getTask()) != null) {
        w.lock();
        // If pool is stopping, ensure thread is interrupted;
        // if not, ensure thread is not interrupted. This
        // requires a recheck in second case to deal with
        // shutdownNow race while clearing interrupt
        if ((runStateAtLeast(ctl.get(), STOP) ||
           (Thread.interrupted() &&
           runStateAtLeast(ctl.get(), STOP))) &&
          !wt.isInterrupted())
          wt.interrupt();
        try {
          beforeExecute(wt, task);
          Throwable thrown = null;
          try {
            task.run();
          } catch (RuntimeException x) {
            thrown = x; throw x;
          } catch (Error x) {
            thrown = x; throw x;
          } catch (Throwable x) {
            thrown = x; throw new Error(x);
          } finally {
            afterExecute(task, thrown);
          }
        } finally {
          task = null;
          w.completedTasks++;
          w.unlock();
        }
      }
      completedAbruptly = false;
    } finally {
      processWorkerExit(w, completedAbruptly);
    }
  }
Copy after login

In the submit method of ThreadPoolExecutor, the Callable is packaged into a FutureTask and then handed over to the execute method.

FutureTask

FutureTask inherits from Runnable and Future. The several states defined by FutureTask are

NEW, not yet executed,
COMPLETING, and being executed.
NORMAL, normal execution is completed and the result is obtained
EXCEPTIONAL, execution
throws an exception CANCELLED, execution is canceled
INTERRUPTING, execution is being interrupted
INTERRUPTED, has been interrupted.

The key get method

public V get() throws InterruptedException, ExecutionException {
    int s = state;
    if (s <= COMPLETING)
      s = awaitDone(false, 0L);
    return report(s);
  }
Copy after login

first obtains the current status. If the execution has not been completed and is normal, it enters the waiting result process. Continuously

loopobtains the current status in awaitDone. If there is no result, add itself to the head of the waiting list through CAS. If a timeout is set, LockSupport.parkNanos to the specified time.

static final class WaitNode {
    volatile Thread thread;
    volatile WaitNode next;
    WaitNode() { thread = Thread.currentThread(); }
  }
private int awaitDone(boolean timed, long nanos)
    throws InterruptedException {
    final long deadline = timed ? System.nanoTime() + nanos : 0L;
    WaitNode q = null;
    boolean queued = false;
    for (;;) {
      if (Thread.interrupted()) {
        removeWaiter(q);
        throw new InterruptedException();
      }
      int s = state;
      if (s > COMPLETING) {
        if (q != null)
          q.thread = null;
        return s;
      }
      else if (s == COMPLETING) // cannot time out yet
        Thread.yield();
      else if (q == null)
        q = new WaitNode();
      else if (!queued)
        queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                           q.next = waiters, q);
      else if (timed) {
        nanos = deadline - System.nanoTime();
        if (nanos <= 0L) {
          removeWaiter(q);
          return state;
        }
        LockSupport.parkNanos(this, nanos);
      }
      else
        LockSupport.park(this);
    }
  }
Copy after login

The run method of FutureTask is to execute the task and set the position of the result. First, determine whether the current state is NEW and set the current thread as the execution thread. Then call Callable's call to obtain the result and then set the result to modify the FutureTask state.

public void run() {
    if (state != NEW ||
      !UNSAFE.compareAndSwapObject(this, runnerOffset,
                     null, Thread.currentThread()))
      return;
    try {
      Callable<V> c = callable;
      if (c != null && state == NEW) {
        V result;
        boolean ran;
        try {
          result = c.call();
          ran = true;
        } catch (Throwable ex) {
          result = null;
          ran = false;
          setException(ex);
        }
        if (ran)
          set(result);
      }
    } finally {
      // runner must be non-null until state is settled to
      // prevent concurrent calls to run()
      runner = null;
      // state must be re-read after nulling runner to prevent
      // leaked interrupts
      int s = state;
      if (s >= INTERRUPTING)
        handlePossibleCancellationInterrupt(s);
    }
  }
Copy after login

The above is the detailed content of Detailed analysis of the principle of ThreadPoolExecutor in java (with code). For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template