Home > Web Front-end > JS Tutorial > body text

In-depth understanding of blocking queue containers in Java thread programming_Basic knowledge

WBOY
Release: 2016-05-16 15:27:27
Original
1556 people have browsed it

1. What is a blocking queue?

BlockingQueue is a queue that supports two additional operations. These two additional operations are: when the queue is empty, the thread getting the element waits for the queue to become non-empty. When the queue is full, the thread storing the element waits for the queue to become available. Blocking queues are often used in producer and consumer scenarios. The producer is the thread that adds elements to the queue, and the consumer is the thread that takes elements from the queue. The blocking queue is a container where the producer stores elements, and the consumer only takes elements from the container.

The blocking queue provides four processing methods:

2015127142052051.png (522×105)

Throwing an exception: When the blocking queue is full, inserting elements into the queue will throw an IllegalStateException ("Queue full") exception. When the queue is empty, NoSuchElementException will be thrown when getting elements from the queue.
Return special value: The insertion method will return whether it is successful or not, and return true if successful. The removal method is to take out an element from the queue, if there is no element, return null
Always blocking: When the blocking queue is full, if the producer thread puts elements into the queue, the queue will block the producer thread until it gets the data or exits in response to an interrupt. When the queue is empty and the consumer thread attempts to take elements from the queue, the queue will also block the consumer thread until the queue is available.
Timeout exit: When the blocking queue is full, the queue will block the producer thread for a period of time. If it exceeds a certain time, the producer thread will exit.
2. Blocking queue in Java

JDK7 provides 7 blocking queues. They are

  1. ArrayBlockingQueue: A bounded blocking queue composed of an array structure.
  2. LinkedBlockingQueue: A bounded blocking queue composed of a linked list structure.
  3. PriorityBlockingQueue: An unbounded blocking queue that supports priority sorting.
  4. DelayQueue: An unbounded blocking queue implemented using a priority queue.
  5. SynchronousQueue: A blocking queue that does not store elements.
  6. LinkedTransferQueue: an unbounded blocking queue composed of a linked list structure.
  7. LinkedBlockingDeque: A two-way blocking queue composed of a linked list structure.

ArrayBlockingQueue is a bounded blocking queue implemented using an array. This queue sorts elements on a first-in-first-out (FIFO) basis. By default, visitors are not guaranteed fair access to the queue. The so-called fair access queue refers to all blocked producer threads or consumer threads. When the queue is available, the queue can be accessed in the order of blocking, that is, the producer thread blocked first , you can insert elements into the queue first, and the consumer thread that blocks first can get elements from the queue first. Usually, throughput is reduced to ensure fairness. We can create a fair blocking queue using the following code:

ArrayBlockingQueue fairQueue = new ArrayBlockingQueue(1000,true);
Copy after login

Visitor fairness is achieved using reentrant locks, the code is as follows:

public ArrayBlockingQueue(int capacity, boolean fair) {
    if (capacity <= 0)
      throw new IllegalArgumentException();
    this.items = new Object[capacity];
    lock = new ReentrantLock(fair);
    notEmpty = lock.newCondition();
    notFull = lock.newCondition();
}
Copy after login

LinkedBlockingQueue is a bounded blocking queue implemented using a linked list. The default and maximum length of this queue is Integer.MAX_VALUE. This queue sorts elements on a first-in, first-out basis.

PriorityBlockingQueue is an unbounded queue that supports priority. By default, the elements are arranged in natural order, and the sorting rules of the elements can also be specified through the comparator. Elements are sorted in ascending order.

DelayQueue is an unbounded blocking queue that supports delayed acquisition of elements. Queues are implemented using PriorityQueue. The elements in the queue must implement the Delayed interface. When creating the element, you can specify how long it will take to get the current element from the queue. Elements can only be fetched from the queue when the delay expires. We can use DelayQueue in the following application scenarios:

Cache system design: You can use DelayQueue to save the validity period of cache elements, and use a thread to query the DelayQueue in a loop. Once the element can be obtained from the DelayQueue, it means that the cache validity period has expired.
Scheduled tasks. Use DelayQueue to save the tasks and execution time that will be executed on the day. Once the task is obtained from DelayQueue, it will be executed. For example, TimerQueue is implemented using DelayQueue.
Delayed in the queue must implement compareTo to specify the order of elements. For example, put the one with the longest delay at the end of the queue. The implementation code is as follows:

public int compareTo(Delayed other) {
      if (other == this) // compare zero ONLY if same object
        return 0;
      if (other instanceof ScheduledFutureTask) {
        ScheduledFutureTask x = (ScheduledFutureTask)other;
        long diff = time - x.time;
        if (diff < 0)
          return -1;
        else if (diff > 0)
          return 1;
  else if (sequenceNumber < x.sequenceNumber)
          return -1;
        else
          return 1;
      }
      long d = (getDelay(TimeUnit.NANOSECONDS) -
           other.getDelay(TimeUnit.NANOSECONDS));
      return (d == 0) &#63; 0 : ((d < 0) &#63; -1 : 1);
    }

Copy after login

3. How to implement the Delayed interface

We can refer to the ScheduledFutureTask class in ScheduledThreadPoolExecutor. This class implements the Delayed interface. First: when the object is created, use time to record when the previous object can be used. The code is as follows:


ScheduledFutureTask(Runnable r, V result, long ns, long period) {
      super(r, result);
      this.time = ns;
      this.period = period;
      this.sequenceNumber = sequencer.getAndIncrement();
}
Copy after login

Then use getDelay to query how long the current element needs to be delayed. The code is as follows:

public long getDelay(TimeUnit unit) {
      return unit.convert(time - now(), TimeUnit.NANOSECONDS);
    }
Copy after login

通过构造函数可以看出延迟时间参数ns的单位是纳秒,自己设计的时候最好使用纳秒,因为getDelay时可以指定任意单位,一旦以纳秒作为单位,而延时的时间又精确不到纳秒就麻烦了。使用时请注意当time小于当前时间时,getDelay会返回负数。

4.如何实现延时队列

延时队列的实现很简单,当消费者从队列里获取元素时,如果元素没有达到延时时间,就阻塞当前线程。

long delay = first.getDelay(TimeUnit.NANOSECONDS);
          if (delay <= 0)
            return q.poll();
          else if (leader != null)
            available.await();
Copy after login

SynchronousQueue是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。SynchronousQueue可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列本身并不存储任何元素,非常适合于传递性场景,比如在一个线程中使用的数据,传递给另外一个线程使用,SynchronousQueue的吞吐量高于LinkedBlockingQueue 和 ArrayBlockingQueue。

LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。相对于其他阻塞队列,LinkedTransferQueue多了tryTransfer和transfer方法。

transfer方法。如果当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的poll()方法时),transfer方法可以把生产者传入的元素立刻transfer(传输)给消费者。如果没有消费者在等待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素被消费者消费了才返回。transfer方法的关键代码如下:

Node pred = tryAppend(s, haveData);
return awaitMatch(s, pred, e, (how == TIMED), nanos);
Copy after login

第一行代码是试图把存放当前元素的s节点作为tail节点。第二行代码是让CPU自旋等待消费者消费元素。因为自旋会消耗CPU,所以自旋一定的次数后使用Thread.yield()方法来暂停当前正在执行的线程,并执行其他线程。

tryTransfer方法。则是用来试探下生产者传入的元素是否能直接传给消费者。如果没有消费者等待接收元素,则返回false。和transfer方法的区别是tryTransfer方法无论消费者是否接收,方法立即返回。而transfer方法是必须等到消费者消费了才返回。

对于带有时间限制的tryTransfer(E e, long timeout, TimeUnit unit)方法,则是试图把生产者传入的元素直接传给消费者,但是如果没有消费者消费该元素则等待指定的时间再返回,如果超时还没消费元素,则返回false,如果在超时时间内消费了元素,则返回true。

LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列。所谓双向队列指的你可以从队列的两端插入和移出元素。双端队列因为多了一个操作队列的入口,在多线程同时入队时,也就减少了一半的竞争。相比其他的阻塞队列,LinkedBlockingDeque多了addFirst,addLast,offerFirst,offerLast,peekFirst,peekLast等方法,以First单词结尾的方法,表示插入,获取(peek)或移除双端队列的第一个元素。以Last单词结尾的方法,表示插入,获取或移除双端队列的最后一个元素。另外插入方法add等同于addLast,移除方法remove等效于removeFirst。但是take方法却等同于takeFirst,不知道是不是Jdk的bug,使用时还是用带有First和Last后缀的方法更清楚。

在初始化LinkedBlockingDeque时可以设置容量防止其过渡膨胀。另外双向阻塞队列可以运用在“工作窃取”模式中。

5.阻塞队列的实现原理
本文以ArrayBlockingQueue为例,其他阻塞队列实现原理可能和ArrayBlockingQueue有一些差别,但是大体思路应该类似,有兴趣的朋友可自行查看其他阻塞队列的实现源码。

  首先看一下ArrayBlockingQueue类中的几个成员变量:

public class ArrayBlockingQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable {
 
private static final long serialVersionUID = -817911632652898426L;
 
/** The queued items */
private final E[] items;
/** items index for next take, poll or remove */
private int takeIndex;
/** items index for next put, offer, or add. */
private int putIndex;
/** Number of items in the queue */
private int count;
 
/*
* Concurrency control uses the classic two-condition algorithm
* found in any textbook.
*/
 
/** Main lock guarding all access */
private final ReentrantLock lock;
/** Condition for waiting takes */
private final Condition notEmpty;
/** Condition for waiting puts */
private final Condition notFull;
}
Copy after login

  可以看出,ArrayBlockingQueue中用来存储元素的实际上是一个数组,takeIndex和putIndex分别表示队首元素和队尾元素的下标,count表示队列中元素的个数。

  lock是一个可重入锁,notEmpty和notFull是等待条件。

  下面看一下ArrayBlockingQueue的构造器,构造器有三个重载版本:

public ArrayBlockingQueue(int capacity) {
}
public ArrayBlockingQueue(int capacity, boolean fair) {
 
}
public ArrayBlockingQueue(int capacity, boolean fair,
             Collection<&#63; extends E> c) {
}
Copy after login

  第一个构造器只有一个参数用来指定容量,第二个构造器可以指定容量和公平性,第三个构造器可以指定容量、公平性以及用另外一个集合进行初始化。

  然后看它的两个关键方法的实现:put()和take():

public void put(E e) throws InterruptedException {
  if (e == null) throw new NullPointerException();
  final E[] items = this.items;
  final ReentrantLock lock = this.lock;
  lock.lockInterruptibly();
  try {
    try {
      while (count == items.length)
        notFull.await();
    } catch (InterruptedException ie) {
      notFull.signal(); // propagate to non-interrupted thread
      throw ie;
    }
    insert(e);
  } finally {
    lock.unlock();
  }
}
Copy after login

  从put方法的实现可以看出,它先获取了锁,并且获取的是可中断锁,然后判断当前元素个数是否等于数组的长度,如果相等,则调用notFull.await()进行等待,如果捕获到中断异常,则唤醒线程并抛出异常。

  当被其他线程唤醒时,通过insert(e)方法插入元素,最后解锁。

  我们看一下insert方法的实现:

private void insert(E x) {
  items[putIndex] = x;
  putIndex = inc(putIndex);
  ++count;
  notEmpty.signal();
}
Copy after login

  它是一个private方法,插入成功后,通过notEmpty唤醒正在等待取元素的线程。

  下面是take()方法的实现:

public E take() throws InterruptedException {
  final ReentrantLock lock = this.lock;
  lock.lockInterruptibly();
  try {
    try {
      while (count == 0)
        notEmpty.await();
    } catch (InterruptedException ie) {
      notEmpty.signal(); // propagate to non-interrupted thread
      throw ie;
    }
    E x = extract();
    return x;
  } finally {
    lock.unlock();
  }
}
Copy after login


  跟put方法实现很类似,只不过put方法等待的是notFull信号,而take方法等待的是notEmpty信号。在take方法中,如果可以取元素,则通过extract方法取得元素,下面是extract方法的实现:


private E extract() {
  final E[] items = this.items;
  E x = items[takeIndex];
  items[takeIndex] = null;
  takeIndex = inc(takeIndex);
  --count;
  notFull.signal();
  return x;
}
Copy after login

   跟insert方法也很类似。

  其实从这里大家应该明白了阻塞队列的实现原理,事实它和我们用Object.wait()、Object.notify()和非阻塞队列实现生产者-消费者的思路类似,只不过它把这些工作一起集成到了阻塞队列中实现。

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template
About us Disclaimer Sitemap
php.cn:Public welfare online PHP training,Help PHP learners grow quickly!