解析一个通过添加本地分区索引提高SQL性能的案例
今天接到同事求助,说有一个select query,在Oracle上要跑一分多钟,他希望能在5s内出结果,以下就是解决这个问题的方法,需要的朋友可以参考下 该sql如下: 复制代码 代码如下: Select /*+ parallel(src, 8) */ distinct src.systemname as systemname ,
今天接到同事求助,说有一个select query,在Oracle上要跑一分多钟,他希望能在5s内出结果,以下就是解决这个问题的方法,需要的朋友可以参考下
该sql如下:
复制代码 代码如下:
Select /*+ parallel(src, 8) */ distinct
src.systemname as systemname
, src.databasename as databasename
, src.tablename as tablename
, src.username as username
from meta_dbql_table_usage_exp_hst src
inner join DR_QRY_LOG_EXP_HST rl on
src.acctstringdate = rl.acctstringdate
and src.queryid = rl.queryid
And Src.Systemname = Rl.Systemname
and src.acctstringdate > sysdate - 30
And Rl.Acctstringdate > Sysdate - 30
inner join meta_dr_qry_log_tgt_all_hst tgt on
upper(tgt.systemname) = upper('MOZART')
And Upper(tgt.Databasename) = Upper('GDW_TABLES')
And Upper(tgt.Tablename) = Upper('SSA_SLNG_LSTG_MTRC_SD')
AND src.acctstringdate = tgt.acctstringdate
and rl.statement_id = tgt.statement_id
and rl.systemname = tgt.systemname
And Tgt.Acctstringdate > Sysdate - 30
And Not(
Upper(Tgt.Systemname)=Upper(src.systemname)
And
Upper(Tgt.Databasename) = Upper(Src.Databasename)
And
Upper(Tgt.Tablename) = Upper(Src.Tablename)
)
And tgt.Systemname is not null
And tgt.Databasename Is Not Null
And tgt.tablename is not null
SQL的简单分析
总 得来看,这个SQL就是三个表 (meta_dbql_table_usage_exp_hst,DR_QRY_LOG_EXP_HST,meta_dr_qry_log_tgt_all_hst) 的INNER JOIN,这三个表数据量都在百万级别,且都是分区表(以acctstringdate为分区键),执行计划如下:
复制代码 代码如下:
------------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop |
------------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 159 | 8654 | | |
| 1 | PX COORDINATOR | | | | | | |
| 2 | PX SEND QC (RANDOM) | :TQ10002 | 1 | 159 | 8654 | | |
| 3 | SORT UNIQUE | | 1 | 159 | 8654 | | |
| 4 | PX RECEIVE | | 1 | 36 | 3 | | |
| 5 | PX SEND HASH | :TQ10001 | 1 | 36 | 3 | | |
|* 6 | TABLE ACCESS BY LOCAL INDEX ROWID| DR_QRY_LOG_EXP_HST | 1 | 36 | 3 | | |
| 7 | NESTED LOOPS | | 1 | 159 | 8633 | | |
| 8 | NESTED LOOPS | | 8959 | 1076K| 4900 | | |
| 9 | BUFFER SORT | | | | | | |
| 10 | PX RECEIVE | | | | | | |
| 11 | PX SEND BROADCAST | :TQ10000 | | | | | |
| 12 | PARTITION RANGE ITERATOR | | 1 | 56 | 4746 | KEY | 14 |
|* 13 | TABLE ACCESS FULL | META_DR_QRY_LOG_TGT_ALL_HST | 1 | 56 | 4746 | KEY | 14 |
| 14 | PX BLOCK ITERATOR | | 8959 | 586K| 154 | KEY | KEY |
|* 15 | TABLE ACCESS FULL | META_DBQL_TABLE_USAGE_EXP_HST | 8959 | 586K| 154 | KEY | KEY |
| 16 | PARTITION RANGE ITERATOR | | 1 | | 2 | KEY | KEY |
|* 17 | INDEX RANGE SCAN | DR_QRY_LOG_EXP_HST_IDX | 1 | | 2 | KEY | KEY |
------------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
6 - filter("RL"."STATEMENT_ID"="TGT"."STATEMENT_ID" AND "RL"."SYSTEMNAME"="TGT"."SYSTEMNAME" AND "SRC"."SYSTEMNAME"="RL"."SYSTEMNAME")
13 - filter(UPPER("TGT"."SYSTEMNAME")='MOZART' AND UPPER("TGT"."DATABASENAME")='GDW_TABLES' AND
UPPER("TGT"."TABLENAME")='SSA_SLNG_LSTG_MTRC_SD' AND "TGT"."ACCTSTRINGDATE">SYSDATE@!-30 AND "TGT"."SYSTEMNAME" IS NOT NULL
"TGT"."DATABASENAME" IS NOT NULL AND "TGT"."TABLENAME" IS NOT NULL)
15 - filter("SRC"."ACCTSTRINGDATE"="TGT"."ACCTSTRINGDATE" AND (UPPER("TGT"."SYSTEMNAME")UPPER("SRC"."SYSTEMNAME") OR
UPPER("TGT"."DATABASENAME")UPPER("SRC"."DATABASENAME") OR UPPER("TGT"."TABLENAME")UPPER("SRC"."TABLENAME")) AND
"SRC"."ACCTSTRINGDATE">SYSDATE@!-30)
17 - access("SRC"."QUERYID"="RL"."QUERYID" AND "SRC"."ACCTSTRINGDATE"="RL"."ACCTSTRINGDATE")
filter("RL"."ACCTSTRINGDATE">SYSDATE@!-30)

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Windows 10 vs. Windows 11 성능 비교: 어느 것이 더 낫나요? 지속적인 기술 개발과 발전으로 운영 체제는 지속적으로 업데이트되고 업그레이드됩니다. 세계 최대 운영 체제 개발자 중 하나인 Microsoft의 Windows 운영 체제 시리즈는 항상 사용자로부터 많은 관심을 받아 왔습니다. 2021년에 Microsoft는 Windows 11 운영 체제를 출시하여 광범위한 논의와 관심을 불러일으켰습니다. 그렇다면 Windows 10과 Windows 11의 성능 차이는 무엇입니까?

Ollama는 Llama2, Mistral, Gemma와 같은 오픈 소스 모델을 로컬에서 쉽게 실행할 수 있는 매우 실용적인 도구입니다. 이번 글에서는 Ollama를 사용하여 텍스트를 벡터화하는 방법을 소개하겠습니다. Ollama를 로컬에 설치하지 않은 경우 이 문서를 읽을 수 있습니다. 이 기사에서는 nomic-embed-text[2] 모델을 사용합니다. 짧은 컨텍스트 및 긴 컨텍스트 작업에서 OpenAI text-embedding-ada-002 및 text-embedding-3-small보다 성능이 뛰어난 텍스트 인코더입니다. o를 성공적으로 설치한 후 nomic-embed-text 서비스를 시작하십시오.

PHP 배열 키 값 뒤집기 방법의 성능 비교는 array_flip() 함수가 대규모 배열(100만 개 이상의 요소)에서 for 루프보다 더 나은 성능을 발휘하고 시간이 덜 걸리는 것을 보여줍니다. 키 값을 수동으로 뒤집는 for 루프 방식은 상대적으로 시간이 오래 걸립니다.

Windows 운영 체제는 항상 개인용 컴퓨터에서 가장 널리 사용되는 운영 체제 중 하나였으며, Windows 10은 Microsoft가 새로운 Windows 11 시스템을 출시한 최근까지 오랫동안 Microsoft의 주력 운영 체제였습니다. Windows 11 시스템이 출시되면서 사람들은 Windows 10과 Windows 11 시스템 중 어느 것이 더 나은지에 관심을 가지게 되었습니다. 먼저 W부터 살펴보겠습니다.

다양한 Java 프레임워크의 성능 비교: REST API 요청 처리: Vert.x가 최고이며 요청 속도는 SpringBoot의 2배, Dropwizard의 3배입니다. 데이터베이스 쿼리: SpringBoot의 HibernateORM은 Vert.x 및 Dropwizard의 ORM보다 우수합니다. 캐싱 작업: Vert.x의 Hazelcast 클라이언트는 SpringBoot 및 Dropwizard의 캐싱 메커니즘보다 우수합니다. 적합한 프레임워크: 애플리케이션 요구 사항에 따라 선택하세요. Vert.x는 고성능 웹 서비스에 적합하고, SpringBoot는 데이터 집약적 애플리케이션에 적합하며, Dropwizard는 마이크로서비스 아키텍처에 적합합니다.

C++ 프로그램 성능에 대한 함수의 영향에는 함수 호출 오버헤드, 로컬 변수 및 객체 할당 오버헤드가 포함됩니다. 함수 호출 오버헤드: 스택 프레임 할당, 매개변수 전송 및 제어 전송을 포함하며 이는 작은 함수에 상당한 영향을 미칩니다. 지역 변수 및 개체 할당 오버헤드: 지역 변수 또는 개체 생성 및 소멸이 많으면 스택 오버플로 및 성능 저하가 발생할 수 있습니다.

[PHP 중간점의 의미와 사용법 분석] PHP에서 중간점(.)은 두 개의 문자열이나 객체의 속성이나 메소드를 연결하는 데 사용되는 일반적으로 사용되는 연산자입니다. 이 기사에서는 구체적인 코드 예제를 통해 PHP에서 중간점의 의미와 사용법을 자세히 살펴보겠습니다. 1. 문자열 중간점 연산자 연결 PHP에서 가장 일반적인 사용법은 두 문자열을 연결하는 것입니다. 두 문자열 사이에 .을 배치하면 두 문자열을 이어붙여 새 문자열을 만들 수 있습니다. $string1=&qu

C++ 다중 스레드 성능을 최적화하기 위한 효과적인 기술에는 리소스 경합을 피하기 위해 스레드 수를 제한하는 것이 포함됩니다. 경합을 줄이려면 가벼운 뮤텍스 잠금을 사용하세요. 잠금 범위를 최적화하고 대기 시간을 최소화합니다. 동시성을 향상하려면 잠금 없는 데이터 구조를 사용하세요. 바쁜 대기를 피하고 이벤트를 통해 스레드에 리소스 가용성을 알립니다.
