数据库的范式理论
先扫盲: 超键(super key): 在关系中能唯一标识元组的属性集称为关系模式的超键 候选键(candidate key) :不含有多余属性的超键称为候选键 主键(primary key) :用户选作元组标识的一个候选键程序主键 比如一个小范围的所有人,没有重名的,考虑以下属性 身份
先扫盲:
超键(super key):在关系中能唯一标识元组的属性集称为关系模式的超键
候选键(candidate key):不含有多余属性的超键称为候选键
主键(primary key):用户选作元组标识的一个候选键程序主键
比如一个小范围的所有人,没有重名的,考虑以下属性
身份证 姓名 性别 年龄
身份证唯一,所以是一个超键
姓名唯一,所以是一个超键
(姓名,性别)唯一,所以是一个超键
(姓名,性别,年龄)唯一,所以是一个超键
--这里可以看出,超键的组合是唯一的,但可能不是最小唯一的
身份证唯一,而且没有多余属性,所以是一个候选键
姓名唯一,而且没有多余属性,所以是一个候选键
--这里可以看出,候选键是没有多余属性的超键
考虑输入查询方便性,可以选择 身份证 为主键
也可以 考虑习惯 选择 姓名 为主键
--主键是选中的一个候选键
第一范式:
所有的属性都是不可分割的原子单位。
第二范式:
如果关系模式R(U,F)中的所有非主属性都完全依赖于任意一个候选关键字,则称关系R 是属于第二范式。
第三范式:
如果关系模式R(U,F)中的所有非主属性对任何候选关键字都不存在传递信赖,则称关系R是属于第三范式的
BC范式:(BCNF)
如果关系模式R(U,F)的所有属性(包括主属性和非主属性)都不传递依赖于R的任何候选关键字,那么称关系R是属于BCNF的。
举例说明:
第一范式(1NF):
如果关系模式R的每个关系都是r的属性值不可分割的原子值,则称关系R是第一范式的模式.
不满足第一范式的情况:关系R(name,address,phone)
----------------------------------------------------------------------
name address phone
AA 山西太原 2204446
AA 山西太原 8350524
----------------------------------------------------------------------
说明:phone可以再分(可以分为phone1和phone2).
*************************************************************************************
第二范式(2NF):
1):局部依赖:
对于依赖关系 W->A (A依赖于W),如果存在X归属于W,且X->A(A依赖于X),那么称W->A是局部依赖;否则称W->A是完全依赖.
比如:
关系模式R(sno,cno,grade,tname,taddr)
sno:学生学号;cno:课程编号;grade:成绩;tname:老师姓名;taddr:老师住址
(sno,cno)->(tname,taddr)(sno,cno决定于tname以及cno)是局部依赖,因为cno->(tname,taddr).
2):二范式定义:
如果关系模式R满足第一范式,且每个非主属性完全依赖于侯选键,则称R满足第二范式.
不满足第二范式的情况:
关系模式R(sno,cno,grade,tname,taddr)
sno:学生学号;cno:课程编号;grade:成绩;tname:老师姓名;taddr:老师住址
----------------------------------------------------------------------
sno cno grade tname taddr
102 001 95 张老师 山西太原....
103 001 98 张老师 山西太原....
104 002 95 李老师 中国北京....
105 003 90 刘老师 中国上海....
----------------------------------------------------------------------
说明:出现相同的tname,taddr三次
消除方法:分解关系模式R
----------------------------------------------------------------------
R1(sno,cno,grade)
sno cno grade
101 001 100102 001 95
103 001 98
104 002 95
105 003 90
R2(cno,tname,taddr)
cno tname taddr
001 张老师 山西太原....002 李老师 中国北京....
003 刘老师 中国上海....
----------------------------------------------------------------------
*************************************************************************************
第三范式(3NF):
1):传递依赖:如果X->Y,Y->A,且Y不依赖X和A不是Y的子集,那么称X->A是传递依赖.(A传递依赖于X)
2):三范式定义:
如果关系模式R是1NF,且每个非主属性都不依赖于R的侯选键,那么称R满足第三范式.
关系模式R2(cno,tname,taddr)是2NF模式,如果在R2中存在cno->tname,tname->taddr,那么cno->taddr就是个传递依赖,及不满足第三范式.
----------------------------------------------------------------------
cno tname taddr
001 张老师 山西太原....
002 李老师 中国北京....
003 刘老师 中国上海....
004 张老师 山西太原....
005 张老师 山西太原....
----------------------------------------------------------------------
说明:张老师开设了3门课程,上面就出现了3个元组,教师地址重复了3次.
消除方法:分解关系模式R2
----------------------------------------------------------------------
R3(cno,tname)
cno tname
001 张老师002 李老师
003 刘老师
004 张老师
005 张老师
R4(tname,taddr)
tname taddr
张老师 山西太原....李老师 中国北京....
刘老师 中国上海....
----------------------------------------------------------------------
再补充一下:
第四范式(4NF)
第四范式禁止主键列和非主键列一对多关系不受约束
第五范式(5NF)
第五范式将表分割成尽可能小的块,为了排除在表中所有的冗余.

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











현대 제조업에서 정확한 결함 검출은 제품 품질을 보장하는 열쇠일 뿐만 아니라 생산 효율성을 향상시키는 핵심이기도 합니다. 그러나 기존 결함 감지 데이터세트는 실제 적용에 필요한 정확성과 의미론적 풍부함이 부족한 경우가 많아 모델이 특정 결함 카테고리나 위치를 식별할 수 없게 됩니다. 이 문제를 해결하기 위해 광저우 과학기술대학교와 Simou Technology로 구성된 최고 연구팀은 산업 결함에 대한 상세하고 의미론적으로 풍부한 대규모 주석을 제공하는 "DefectSpectrum" 데이터 세트를 혁신적으로 개발했습니다. 표 1에서 볼 수 있듯이, 다른 산업 데이터 세트와 비교하여 "DefectSpectrum" 데이터 세트는 가장 많은 결함 주석(5438개의 결함 샘플)과 가장 상세한 결함 분류(125개의 결함 카테고리)를 제공합니다.

오픈 LLM 커뮤니티는 백개의 꽃이 피어 경쟁하는 시대입니다. Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 등을 보실 수 있습니다. 훌륭한 연기자. 그러나 GPT-4-Turbo로 대표되는 독점 대형 모델과 비교하면 개방형 모델은 여전히 많은 분야에서 상당한 격차를 보이고 있습니다. 일반 모델 외에도 프로그래밍 및 수학을 위한 DeepSeek-Coder-V2, 시각 언어 작업을 위한 InternVL과 같이 핵심 영역을 전문으로 하는 일부 개방형 모델이 개발되었습니다.

AI의 경우 수학 올림피아드는 더 이상 문제가 되지 않습니다. 목요일에 Google DeepMind의 인공 지능은 AI를 사용하여 올해 국제 수학 올림피아드 IMO의 실제 문제를 해결하는 위업을 달성했으며 금메달 획득에 한 걸음 더 다가섰습니다. 지난 주 막 끝난 IMO 대회에는 대수학, 조합론, 기하학, 수론 등 6개 문제가 출제됐다. 구글이 제안한 하이브리드 AI 시스템은 4문제를 맞혀 28점을 얻어 은메달 수준에 이르렀다. 이달 초 UCLA 종신 교수인 테렌스 타오(Terence Tao)가 상금 100만 달러의 AI 수학 올림피아드(AIMO Progress Award)를 추진했는데, 예상외로 7월 이전에 AI 문제 해결 수준이 이 수준으로 향상됐다. IMO에서 동시에 질문을 해보세요. 가장 정확하게 하기 어려운 것이 IMO인데, 역사도 가장 길고, 규모도 가장 크며, 가장 부정적이기도 합니다.

Editor | ScienceAI 제한된 임상 데이터를 기반으로 수백 개의 의료 알고리즘이 승인되었습니다. 과학자들은 누가 도구를 테스트해야 하며 최선의 방법은 무엇인지에 대해 토론하고 있습니다. 데빈 싱(Devin Singh)은 응급실에서 오랜 시간 치료를 기다리던 중 심장마비를 겪는 소아환자를 목격했고, 이를 계기로 대기시간을 단축하기 위해 AI 적용을 모색하게 됐다. SickKids 응급실의 분류 데이터를 사용하여 Singh과 동료들은 잠재적인 진단을 제공하고 테스트를 권장하는 일련의 AI 모델을 구축했습니다. 한 연구에 따르면 이러한 모델은 의사 방문 속도를 22.3% 단축하여 의료 검사가 필요한 환자당 결과 처리 속도를 거의 3시간 단축할 수 있는 것으로 나타났습니다. 그러나 인공지능 알고리즘의 연구 성공은 이를 입증할 뿐이다.

Editor |KX 오늘날까지 단순한 금속부터 큰 막 단백질에 이르기까지 결정학을 통해 결정되는 구조적 세부 사항과 정밀도는 다른 어떤 방법과도 비교할 수 없습니다. 그러나 가장 큰 과제인 소위 위상 문제는 실험적으로 결정된 진폭에서 위상 정보를 검색하는 것입니다. 덴마크 코펜하겐 대학의 연구원들은 결정 위상 문제를 해결하기 위해 PhAI라는 딥러닝 방법을 개발했습니다. 수백만 개의 인공 결정 구조와 그에 상응하는 합성 회절 데이터를 사용하여 훈련된 딥러닝 신경망은 정확한 전자 밀도 맵을 생성할 수 있습니다. 연구는 이 딥러닝 기반의 순순한 구조 솔루션 방법이 단 2옹스트롬의 해상도로 위상 문제를 해결할 수 있음을 보여줍니다. 이는 원자 해상도에서 사용할 수 있는 데이터의 10~20%에 해당하는 반면, 기존의 순순한 계산은

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

편집자 | Ziluo AI의 신약 개발 간소화에 대한 활용이 폭발적으로 증가하고 있습니다. 신약 개발에 필요한 특성을 가질 수 있는 수십억 개의 후보 분자를 스크리닝합니다. 재료 가격부터 오류 위험까지 고려해야 할 변수가 너무 많아 과학자들이 AI를 사용하더라도 최고의 후보 분자를 합성하는 데 드는 비용을 평가하는 것은 쉬운 일이 아닙니다. 여기서 MIT 연구진은 최고의 분자 후보를 자동으로 식별하여 합성 비용을 최소화하는 동시에 후보가 원하는 특성을 가질 가능성을 최대화하기 위해 정량적 의사결정 알고리즘 프레임워크인 SPARROW를 개발했습니다. 알고리즘은 또한 이러한 분자를 합성하는 데 필요한 재료와 실험 단계를 결정했습니다. SPARROW는 여러 후보 분자를 사용할 수 있는 경우가 많기 때문에 한 번에 분자 배치를 합성하는 비용을 고려합니다.

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다
