목차
> Chapter 2 
데이터 베이스 MySQL 튜토리얼 <<Signals and systems>> Chapter

<<Signals and systems>> Chapter

Jun 07, 2016 pm 03:07 PM
amp and

Signals and systems Chapter 2 Linear Time-Inverariant Systems 2.1 Discrete-time LTI system: the convolution sum 离散的信号可以用叠合的不同幅的delta函数表示出来 The discret-time unit impulse response and the convolution sum representation o

> Chapter 2 





                                                     Linear Time-Inverariant Systems


2.1 Discrete-time LTI system: the convolution sum


离散的信号可以用叠合的不同幅值的delta函数表示出来

<<Signals and systems>> Chapter




The discret-time unit impulse response and the convolution sum representation of LTI systems


<<Signals and systems>> Chapter



<<Signals and systems>> Chapter<<Signals and systems>> Chapter


上面的例子很清楚的一步步的解析了卷积和的过程.


卷积和的部分可以去看看我写的这篇Why should we use convolution?》

对于为什么是x[k]*h[n-k]

这里研究的是LTI系统,h[n]是LTI系统,对于不同时刻k输入x[k],系统的响应仅仅做偏移即可,

x[0]输入的对应h为h[0],x[1]对应的h为h[n-1]... x[k] 对应的就是h[n-k]


为了加深概念的理解,我们再看看时变系统卷积和的过程

输入是X[n],响应是h,注意时变系统的输入响应不同时刻不同,所以这里有三个不同的响应

<<Signals and systems>> Chapter


我们把输入看作impluse 序列,这样,利用delta函数的性质,就很容易get到输出了哇~


<<Signals and systems>> Chapter


要知道对系统输入的是一系列的impulse,于是应该把所有结果(x[-1]h[-1], ...,x[1]h[1])累加起来,得到输出y[n],

这就是为什么下面y[n]卷积和公式里面会有连加符号的原因!


<<Signals and systems>> Chapter


而正是由于时变系统的特性,会导致一种有趣的现象,对于输入x[n]和响应h[n]

<<Signals and systems>> Chapter

<<Signals and systems>> Chapter

计算过程中直接把h[n]反转,然后偏移k个单位,直接于原来的输入信号做乘法,然后把各个单位的结果做累加,得到的就是此刻的输出y[n],最后系统的输出这里书上有一定的“误导性”,之所以打双引号是因为这里h[n]是一个无限长的step function,所以后面无穷逼近于1/(1-alpha). 

<<Signals and systems>> Chapter

在计算机中,不可能用无穷序列来模拟...输入序列就是有限的,那么输出就会是

(length of x[n]) + (length of h[n]) -1。

为什么会是减一?想想,如果输出到(length of x[n]) + (length of h[n])个点的时候,两者已经没有重叠区域,于是得到的结果是0.这里我们不考虑这个没有意义的点.于是输出就只有(length of x[n]) + (length of h[n]) -1个点

这里我做了个例子



%code writer	:	EOF
%code date	:	2014.10 .1
%e-mail		:	jasonleaster@gmail.com
%code file	:	demo_for_convolution
%code purpose:
%             A demo for convolution in LTI-system
clear all
close all

% you could use this varible to define how many number of points in the input sequence.
points = 10;

% x is used as input points
% h is used as responce sequnce.

% %% input sequence one
% x = exp(-[0: (points-1)]);
% h = ones(1,points*10);

%% Input sequence two
alpha = 2;
x = [1 1 1 1 1];
h = alpha.^([0:6]);

length_x = size(x,2);
length_h = size(h,2);

figure(1);
subplot(121);
scatter(1:length_x,x,'r');
title('x[n]');
subplot(122);
scatter(1:length_h,h,'g');
title('h[n]');

output = zeros(1,length_x+length_h -1);

%% Kernel part of our convolution sum   :- )
for current_point_n= 1:length_x + length_h

        tmp = current_point_n;
        while(tmp > 0)

            if  current_point_n  length_x && current_point_n  length_x
                    tmp = tmp -1;
                    continue;
                else
                    if (current_point_n - tmp + 1) <br>
<br>

<p><span><img  src="/static/imghw/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141001015131468&refer=http%3A%2F%2Fblog.csdn.net%2Fcinmyheart%2Farticle%2Fdetails%2F39695943" class="lazy" alt="&lt;&lt;Signals and systems&gt;&gt; Chapter" ><br>
</span></p>
<p><span><br>
</span></p>
<p><span>上面的输入随意调整都性,程序还是比较健壮的</span></p>
<p><span><br>
</span></p>
<p><span><img  src="/static/imghw/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141001015326265&refer=http%3A%2F%2Fblog.csdn.net%2Fcinmyheart%2Farticle%2Fdetails%2F39695943" class="lazy" alt="&lt;&lt;Signals and systems&gt;&gt; Chapter" ><br>
</span></p>
<p><span><br>
</span></p>
<p><span><br>
</span></p>
<p><span><br>
</span></p>
<p><span><br>
</span></p>
<p><span>Properties of LTI systems</span></p>
<p><span>交换律,结合律,分配律</span></p>
<p><span><img  src="/static/imghw/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141001021021577&refer=http%3A%2F%2Fblog.csdn.net%2Fcinmyheart%2Farticle%2Fdetails%2F39695943" class="lazy" alt="&lt;&lt;Signals and systems&gt;&gt; Chapter" ><br>
</span></p>
<p><span><br>
</span></p>
<p><span>对于可逆性的说明demo:</span></p>
<p><span><br>
</span></p>
<p><span><img  src="/static/imghw/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141001021621579&refer=http%3A%2F%2Fblog.csdn.net%2Fcinmyheart%2Farticle%2Fdetails%2F39695943" class="lazy" alt="&lt;&lt;Signals and systems&gt;&gt; Chapter" >                                                 </span></p>
<p><span><br>
</span></p>
<p><span><br>
</span></p>
<p><span>对于因果性的探讨,</span></p>
<p><span><br>
</span></p>
<p><span><img  src="/static/imghw/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141001021454312&refer=http%3A%2F%2Fblog.csdn.net%2Fcinmyheart%2Farticle%2Fdetails%2F39695943" class="lazy" alt="&lt;&lt;Signals and systems&gt;&gt; Chapter" ><br>
</span></p>

<p><br>
</p>
<p><br>
</p>
<p><br>
</p>

<p><br>
</p>
<p><span>稳定性的探究:</span></p>

<p><span><img  src="/static/imghw/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20141001021826364&refer=http%3A%2F%2Fblog.csdn.net%2Fcinmyheart%2Farticle%2Fdetails%2F39695943" class="lazy" alt="&lt;&lt;Signals and systems&gt;&gt; Chapter" ><br>
</span></p>
<p><span><br>
</span></p>
<p><span><br>
</span></p>
<p><span>最后,要认识到,微分方程和差分方程仅仅是分别对于连续和离散系统的输入输出关系的描述而已,他们相似于都是对系统输入输出的描述,不可混淆对比.之前我胡乱的做对比,以至于很苦恼</span></p>
<p><span>这里记录了我思考的过程</span></p>
<p>http://blog.csdn.net/cinmyheart/article/details/39499967<br>
</p>
<p><span><br>
</span></p>
<p><br>
</p>


로그인 후 복사
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

MySQL에서 인덱스를 사용하는 것보다 전체 테이블 스캔이 더 빠를 수 있습니까? MySQL에서 인덱스를 사용하는 것보다 전체 테이블 스캔이 더 빠를 수 있습니까? Apr 09, 2025 am 12:05 AM

전체 테이블 스캔은 MySQL에서 인덱스를 사용하는 것보다 빠를 수 있습니다. 특정 사례는 다음과 같습니다. 1) 데이터 볼륨은 작습니다. 2) 쿼리가 많은 양의 데이터를 반환 할 때; 3) 인덱스 열이 매우 선택적이지 않은 경우; 4) 복잡한 쿼리시. 쿼리 계획을 분석하고 인덱스 최적화, 과도한 인덱스를 피하고 정기적으로 테이블을 유지 관리하면 실제 응용 프로그램에서 최상의 선택을 할 수 있습니다.

Windows 7에 MySQL을 설치할 수 있습니까? Windows 7에 MySQL을 설치할 수 있습니까? Apr 08, 2025 pm 03:21 PM

예, MySQL은 Windows 7에 설치 될 수 있으며 Microsoft는 Windows 7 지원을 중단했지만 MySQL은 여전히 ​​호환됩니다. 그러나 설치 프로세스 중에 다음 지점이 표시되어야합니다. Windows 용 MySQL 설치 프로그램을 다운로드하십시오. MySQL의 적절한 버전 (커뮤니티 또는 기업)을 선택하십시오. 설치 프로세스 중에 적절한 설치 디렉토리 및 문자를 선택하십시오. 루트 사용자 비밀번호를 설정하고 올바르게 유지하십시오. 테스트를 위해 데이터베이스에 연결하십시오. Windows 7의 호환성 및 보안 문제에 주목하고 지원되는 운영 체제로 업그레이드하는 것이 좋습니다.

InnoDB 전체 텍스트 검색 기능을 설명하십시오. InnoDB 전체 텍스트 검색 기능을 설명하십시오. Apr 02, 2025 pm 06:09 PM

InnoDB의 전체 텍스트 검색 기능은 매우 강력하여 데이터베이스 쿼리 효율성과 대량의 텍스트 데이터를 처리 할 수있는 능력을 크게 향상시킬 수 있습니다. 1) InnoDB는 기본 및 고급 검색 쿼리를 지원하는 역 색인화를 통해 전체 텍스트 검색을 구현합니다. 2) 매치 및 키워드를 사용하여 검색, 부울 모드 및 문구 검색을 지원합니다. 3) 최적화 방법에는 워드 세분화 기술 사용, 인덱스의 주기적 재건 및 캐시 크기 조정, 성능과 정확도를 향상시키는 것이 포함됩니다.

InnoDB에서 클러스터 된 인덱스와 비 클러스터 된 인덱스 (2 차 지수)의 차이. InnoDB에서 클러스터 된 인덱스와 비 클러스터 된 인덱스 (2 차 지수)의 차이. Apr 02, 2025 pm 06:25 PM

클러스터 인덱스와 비 클러스터 인덱스의 차이점은 1. 클러스터 된 인덱스는 인덱스 구조에 데이터 행을 저장하며, 이는 기본 키 및 범위별로 쿼리에 적합합니다. 2. 클러스터되지 않은 인덱스는 인덱스 키 값과 포인터를 데이터 행으로 저장하며 비 예산 키 열 쿼리에 적합합니다.

MySQL : 쉽게 학습하기위한 간단한 개념 MySQL : 쉽게 학습하기위한 간단한 개념 Apr 10, 2025 am 09:29 AM

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) 데이터베이스 및 테이블 작성 : CreateAbase 및 CreateTable 명령을 사용하십시오. 2) 기본 작업 : 삽입, 업데이트, 삭제 및 선택. 3) 고급 운영 : 가입, 하위 쿼리 및 거래 처리. 4) 디버깅 기술 : 확인, 데이터 유형 및 권한을 확인하십시오. 5) 최적화 제안 : 인덱스 사용, 선택을 피하고 거래를 사용하십시오.

MySQL과 Mariadb가 공존 할 수 있습니다 MySQL과 Mariadb가 공존 할 수 있습니다 Apr 08, 2025 pm 02:27 PM

MySQL 및 MariaDB는 공존 할 수 있지만주의해서 구성해야합니다. 열쇠는 각 데이터베이스에 다른 포트 번호와 데이터 디렉토리를 할당하고 메모리 할당 및 캐시 크기와 같은 매개 변수를 조정하는 것입니다. 연결 풀링, 애플리케이션 구성 및 버전 차이도 고려해야하며 함정을 피하기 위해 신중하게 테스트하고 계획해야합니다. 두 개의 데이터베이스를 동시에 실행하면 리소스가 제한되는 상황에서 성능 문제가 발생할 수 있습니다.

Redshift Zero ETL과의 RDS MySQL 통합 Redshift Zero ETL과의 RDS MySQL 통합 Apr 08, 2025 pm 07:06 PM

데이터 통합 ​​단순화 : AmazonRdsMysQL 및 Redshift의 Zero ETL 통합 효율적인 데이터 통합은 데이터 중심 구성의 핵심입니다. 전통적인 ETL (추출, 변환,로드) 프로세스는 특히 데이터베이스 (예 : AmazonRDSMySQL)를 데이터웨어 하우스 (예 : Redshift)와 통합 할 때 복잡하고 시간이 많이 걸립니다. 그러나 AWS는 이러한 상황을 완전히 변경 한 Zero ETL 통합 솔루션을 제공하여 RDSMYSQL에서 Redshift로 데이터 마이그레이션을위한 단순화 된 거의 실시간 솔루션을 제공합니다. 이 기사는 RDSMYSQL ZERL ETL 통합으로 Redshift와 함께 작동하여 데이터 엔지니어 및 개발자에게 제공하는 장점과 장점을 설명합니다.

MySQL 사용자와 데이터베이스의 관계 MySQL 사용자와 데이터베이스의 관계 Apr 08, 2025 pm 07:15 PM

MySQL 데이터베이스에서 사용자와 데이터베이스 간의 관계는 권한과 테이블로 정의됩니다. 사용자는 데이터베이스에 액세스 할 수있는 사용자 이름과 비밀번호가 있습니다. 권한은 보조금 명령을 통해 부여되며 테이블은 Create Table 명령에 의해 생성됩니다. 사용자와 데이터베이스 간의 관계를 설정하려면 데이터베이스를 작성하고 사용자를 생성 한 다음 권한을 부여해야합니다.

See all articles