데이터 베이스 MySQL 튜토리얼 .NET批量大数据插入性能分析及比较(6.使用表值参数)

.NET批量大数据插入性能分析及比较(6.使用表值参数)

Jun 07, 2016 pm 03:14 PM
.net 사용 분석하다 성능 끼워 넣다 데이터 비교하다

表值 参数 (Table-valued Parameter)是SQL Server 2008增加的新特性,可以将DataTable做为 参数 传递给存储过程。 数据 库执行脚本如下 CREATE TYPE TestType AS TABLE ( Id int NOT NULL ,Name nvarchar(20) NOT NULL ) CREATE PROC InsertData @rows TestT

 

表值参数(Table-valued Parameter)是SQL Server 2008增加的新特性,可以将DataTable做为参数传递给存储过程。

 

数据库执行脚本如下

CREATE TYPE TestType AS TABLE
(
 Id int NOT NULL
 ,Name nvarchar(20) NOT NULL
)

CREATE PROC InsertData
 @rows TestType READONLY
as
begin
 set nocount on
 insert into TestTable(Id, Name)
 select Id, Name from @rows
end

 

 

代码如下:

 

结果如下:

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:10;Time:15312;

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:20;Time:7806;

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:50;Time:3767;

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:100;Time:2217;

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:200;Time:1743;

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:400;Time:1575;

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:500;Time:1566;

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:600;Time:1374;

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:700;Time:1286;

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:800;Time:1463;

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:1000;Time:1272;

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:2000;Time:1069;

Use SqlServer TableType Insert;RecordCount:40000;BatchSize:4000;Time:1001;

 

从时间上来看,似乎并不必前面的案例强,但批处理量得增加,写性能在持续提高,而且实际上程序中花费了大量的时间在创建DataTable及填充其数据上面,如果传递给函数的就是一个DataTable集合,相信使用表值参数的表现会更好。

 

但考虑到需要为插入的表创建类型,创建存储过程,个人认为其通用性不是很好

 

全文链接:

.NET批量大数据插入性能分析比较(1.准备工作)

.NET批量大数据插入性能分析比较(2.普通插入与拼接sql批量插入)

.NET批量大数据插入性能分析比较(3.使用事务)

.NET批量大数据插入性能分析比较(4.使用DataAdapter批量插入)

.NET批量大数据插入性能分析比较(5.使用SqlBulkCopy)

.NET批量大数据插入性能分析比较(6.使用表值参数)

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

iPhone의 느린 셀룰러 데이터 인터넷 속도: 수정 사항 iPhone의 느린 셀룰러 데이터 인터넷 속도: 수정 사항 May 03, 2024 pm 09:01 PM

지연이 발생하고 iPhone의 모바일 데이터 연결 속도가 느립니까? 일반적으로 휴대폰의 셀룰러 인터넷 강도는 지역, 셀룰러 네트워크 유형, 로밍 유형 등과 같은 여러 요소에 따라 달라집니다. 더 빠르고 안정적인 셀룰러 인터넷 연결을 얻기 위해 할 수 있는 일이 몇 가지 있습니다. 수정 1 – iPhone 강제 다시 시작 때로는 장치를 강제로 다시 시작하면 셀룰러 연결을 포함한 많은 항목이 재설정됩니다. 1단계 – 볼륨 높이기 키를 한 번 눌렀다가 놓습니다. 그런 다음 볼륨 작게 키를 눌렀다가 다시 놓습니다. 2단계 - 프로세스의 다음 부분은 오른쪽에 있는 버튼을 누르는 것입니다. iPhone이 다시 시작되도록 하세요. 셀룰러 데이터를 활성화하고 네트워크 속도를 확인하세요. 다시 확인하세요 수정 2 – 데이터 모드 변경 5G는 더 나은 네트워크 속도를 제공하지만 신호가 약할 때 더 잘 작동합니다

공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! 공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! May 06, 2024 pm 04:13 PM

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라

미 공군이 주목할만한 최초의 AI 전투기를 선보였습니다! 전 과정에 걸쳐 장관이 직접 간섭 없이 테스트를 진행했고, 10만 줄의 코드를 21차례 테스트했다. 미 공군이 주목할만한 최초의 AI 전투기를 선보였습니다! 전 과정에 걸쳐 장관이 직접 간섭 없이 테스트를 진행했고, 10만 줄의 코드를 21차례 테스트했다. May 07, 2024 pm 05:00 PM

최근 군계는 미군 전투기가 이제 AI를 활용해 완전 자동 공중전을 완수할 수 있다는 소식에 충격을 받았다. 네, 얼마 전 미군의 AI 전투기가 최초로 공개되면서 그 미스터리가 드러났습니다. 이 전투기의 정식 명칭은 VISTA(Variable Stability Flight Simulator Test Aircraft)로 미 공군 장관이 직접 조종해 일대일 공중전을 모의 실험한 것이다. 5월 2일, 미 공군 장관 프랭크 켄달(Frank Kendall)이 X-62AVISTA를 타고 에드워드 공군 기지에서 이륙했습니다. 1시간의 비행 동안 모든 비행 작업은 AI에 의해 자동으로 완료되었습니다. Kendall은 "지난 수십 년 동안 우리는 자율 공대공 전투의 무한한 잠재력에 대해 생각해 왔지만 항상 도달할 수 없는 것처럼 보였습니다."라고 말했습니다. 그러나 지금은,

AI 스타트업들이 집단적으로 OpenAI로 직무를 전환했고, Ilya가 떠난 후 보안팀이 재편성되었습니다! AI 스타트업들이 집단적으로 OpenAI로 직무를 전환했고, Ilya가 떠난 후 보안팀이 재편성되었습니다! Jun 08, 2024 pm 01:00 PM

지난주 내부 사퇴와 외부 비판의 물결 속에서 OpenAI는 대내외적 난관에 봉착했다. - 미망인 여동생의 침해로 글로벌 열띤 논의가 촉발됐다. - '대군주 조항'에 서명한 직원들이 잇달아 폭로됐다. - 네티즌들은 울트라맨의 '' 일곱 가지 대죄" ” 소문 파기: Vox가 입수한 유출된 정보와 문서에 따르면 Altman을 포함한 OpenAI의 고위 경영진은 이러한 지분 회수 조항을 잘 알고 있었고 이에 서명했습니다. 또한 OpenAI가 직면한 심각하고 시급한 문제인 AI 보안이 있습니다. 최근 가장 눈에 띄는 직원 2명을 포함해 보안 관련 직원 5명이 퇴사하고, '슈퍼얼라인먼트' 팀이 해체되면서 OpenAI의 보안 문제가 다시 한 번 주목을 받고 있다. 포춘지는 OpenA가

PHP 배열 키 값 뒤집기: 다양한 방법의 성능 비교 분석 PHP 배열 키 값 뒤집기: 다양한 방법의 성능 비교 분석 May 03, 2024 pm 09:03 PM

PHP 배열 키 값 뒤집기 방법의 성능 비교는 array_flip() 함수가 대규모 배열(100만 개 이상의 요소)에서 for 루프보다 더 나은 성능을 발휘하고 시간이 덜 걸리는 것을 보여줍니다. 키 값을 수동으로 뒤집는 for 루프 방식은 상대적으로 시간이 오래 걸립니다.

다양한 Java 프레임워크의 성능 비교 다양한 Java 프레임워크의 성능 비교 Jun 05, 2024 pm 07:14 PM

다양한 Java 프레임워크의 성능 비교: REST API 요청 처리: Vert.x가 최고이며 요청 속도는 SpringBoot의 2배, Dropwizard의 3배입니다. 데이터베이스 쿼리: SpringBoot의 HibernateORM은 Vert.x 및 Dropwizard의 ORM보다 우수합니다. 캐싱 작업: Vert.x의 Hazelcast 클라이언트는 SpringBoot 및 Dropwizard의 캐싱 메커니즘보다 우수합니다. 적합한 프레임워크: 애플리케이션 요구 사항에 따라 선택하세요. Vert.x는 고성능 웹 서비스에 적합하고, SpringBoot는 데이터 집약적 애플리케이션에 적합하며, Dropwizard는 마이크로서비스 아키텍처에 적합합니다.

여러 .NET 오픈 소스 AI 및 LLM 관련 프로젝트 프레임워크 공유 여러 .NET 오픈 소스 AI 및 LLM 관련 프로젝트 프레임워크 공유 May 06, 2024 pm 04:43 PM

오늘날 인공지능(AI) 기술 개발은 본격화되고 있으며, 다양한 분야에서 큰 잠재력과 영향력을 보여주고 있습니다. 오늘 Dayao는 여러분에게 몇 가지 참고 자료를 제공하고자 4개의 .NET 오픈 소스 AI 모델 LLM 관련 프로젝트 프레임워크를 공유할 것입니다. https://github.com/YSGStudyHards/DotNetGuide/blob/main/docs/DotNet/DotNetProjectPicks.mdSemanticKernelSemanticKernel은 OpenAI, Azure와 같은 대규모 언어 모델(LLM)을 통합하도록 설계된 오픈 소스 소프트웨어 개발 키트(SDK)입니다.

C++에서 멀티스레드 프로그램의 성능을 최적화하는 방법은 무엇입니까? C++에서 멀티스레드 프로그램의 성능을 최적화하는 방법은 무엇입니까? Jun 05, 2024 pm 02:04 PM

C++ 다중 스레드 성능을 최적화하기 위한 효과적인 기술에는 리소스 경합을 피하기 위해 스레드 수를 제한하는 것이 포함됩니다. 경합을 줄이려면 가벼운 뮤텍스 잠금을 사용하세요. 잠금 범위를 최적화하고 대기 시간을 최소화합니다. 동시성을 향상하려면 잠금 없는 데이터 구조를 사용하세요. 바쁜 대기를 피하고 이벤트를 통해 스레드에 리소스 가용성을 알립니다.

See all articles