목차
8.4.3 修改执行阶段的EX 模块
8.4.4 修改OpenMIPS模块
8.5 测试转移指令的实现效果
8.5.1 测试跳转指令
8.5.2 测试分支指令
데이터 베이스 MySQL 튜토리얼 自己动手写CPU之第八阶段(4)转移指令实现过程2

自己动手写CPU之第八阶段(4)转移指令实现过程2

Jun 07, 2016 pm 03:20 PM
cpu 성취하다 필적 지침 소유하다 옮기다 프로세스 단계

将陆续上传本人写的新书《 自己动手写CPU 》,今天是第36篇,我尽量每周四篇 开展晒书评送书活动,在亚马逊、京东、当当三大图书网站上,发表《自己动手写CPU》书评的前十名读者,均可获赠《步步惊芯——软核 处理器 内部 设计 分析 》一书,大家踊跃参与吧

将陆续上传本人写的新书《自己动手写CPU》,今天是第36篇,我尽量每周四篇

开展晒书评送书活动,在亚马逊、京东、当当三大图书网站上,发表《自己动手写CPU》书评的前十名读者,均可获赠《步步惊芯——软核处理器内部设计分析》一书,大家踊跃参与吧!活动时间:2014-9-11至2014-10-20


8.4.3 修改执行阶段的EX 模块

      参考图8-6可知,EX模块需要增加一些接口,增加的接口描述如表8-4所示。

自己动手写CPU之第八阶段(4)转移指令实现过程2

      EX模块的代码主要修改如下,完整代码请参考本书附带光盘Code\Chapter8目录下的ex.v文件。

module ex(

  ......

  // 处于执行阶段的转移指令要保存的返回地址
  input wire[`RegBus]           link_address_i,

  // 当前执行阶段的指令是否位于延迟槽
  input wire                    is_in_delayslot_i,	
	
  ...... 
	
);
	
  ......

  always @ (*) begin

  ......
	 
    case ( alusel_i ) 
      `EXE_RES_LOGIC:		begin
        wdata_o <br>

<p>      如果alusel_o为EXE_RES_JUMP_BRANCH,那么就将返回地址link_address_i作为要写入目的寄存器的值赋给wdata_o。</p>
<p>      注意一点,此处并没有利用输入的信号is_in_delayslot_i,该信号表示当前处于执行阶段的指令是否是延迟槽指令,这个信号会在异常处理过程中使用到,本章暂时不需要。</p>
<h3 id="修改OpenMIPS模块">8.4.4 修改OpenMIPS模块</h3>
<p>      因为有一些模块添加了接口,所以需要修改顶层模块OpenMIPS,以将这些新增加的接口按照图8-6所示的关系连接起来。具体修改也很简单,不在书中列出,读者可以参考本书附带光盘Code\Chapter8目录下的openmips.v文件。</p>
<h2 id="测试转移指令的实现效果">8.5 测试转移指令的实现效果</h2>
<p>      本节将通过两个测试程序验证转移指令是否实现正确,这两个测试程序分别验证跳转指令、分支指令。</p>
<h3 id="测试跳转指令">8.5.1 测试跳转指令</h3>
<p>      测试代码如下,源文件是本书光盘Code\Chapter8\AsmTest\Test1目录下的inst_rom.S文件。</p>
<pre class="brush:php;toolbar:false">.org 0x0
.set noat
.set noreorder      # 添加这个伪操作,指示编译器不要对程序做出任何优化或是改动
.set nomacro        
.global _start
_start:
   ori  $1,$0,0x0001   # (1)$1 = 0x1                
   j    0x20           #  转移到0x20处
   ori  $1,$0,0x0002   # (2)$1 = 0x2,这是延迟槽指令
   ori  $1,$0,0x1111
   ori  $1,$0,0x1100

   .org 0x20
   ori  $1,$0,0x0003   # (3)$1 = 0x3               
   jal  0x40           #  转移到0x40处,同时设置$31为0x2c
   div  $zero,$31,$1   # (4)此时$31 = 0x2c, $1 = 0x3,所以得到除法结果
                       #     HI = 0x2, LO = 0xe,这是延迟槽指令

   ori  $1,$0,0x0005   # (6)$1 = 0x5
   ori  $1,$0,0x0006   # (7)$1 = 0x6
   j    0x60           #  转移到0x60处
   nop

   .org 0x40
   jalr $2,$31          #  此时$31为0x2c,所以转移到0x2c,同时设置$2为0x48
   or   $1,$2,$0        # (5)$1 = 0x48,这是延迟槽指令

   ori  $1,$0,0x0009    # (10)$1 = 0x9
   ori  $1,$0,0x000a    # (11)$1 = 0xa
   j 0x80               #  转移到0x80处
   nop

   .org 0x60
   ori  $1,$0,0x0007    # (8)$1 = 0x7 
   jr   $2              #  此时$2为0x48,所以转移到0x48处
   ori  $1,$0,0x0008    # (9)$1 = 0x8,这是延迟槽指令
   ori  $1,$0,0x1111
   ori  $1,$0,0x1100

   .org 0x80
   nop
    
_loop:
   j _loop
   nop
로그인 후 복사

自己动手写CPU之第八阶段(4)转移指令实现过程2

8.5.2 测试分支指令

      测试代码如下,源文件是本书光盘Code\Chapter8\AsmTest\Test2目录下的inst_rom.S文件。

.org 0x0
   .set noat
   .set noreorder
   .set nomacro
   .global _start
_start:
   ori  $3,$0,0x8000
   sll  $3,16               # 设置$3 = 0x80000000
   ori  $1,$0,0x0001        #(1)$1 = 0x1                
   b    s1                  # 转移到s1处
   ori  $1,$0,0x0002        #(2)$1 = 0x2,这是延迟槽指令
1:
   ori  $1,$0,0x1111
   ori  $1,$0,0x1100

   .org 0x20
s1:
   ori  $1,$0,0x0003        #(3)$1 = 0x3
   bal  s2                  # 转移到s2处,同时设置$31为0x2c
   div  $zero,$31,$1        #(4)此时$31 = 0x2c, $1 = 0x3,所以除法结果为
                            #    HI = 0x2, LO = 0xe,这是延迟槽指令
   ori  $1,$0,0x1100
   ori  $1,$0,0x1111
   bne  $1,$0,s3
   nop
   ori  $1,$0,0x1100
   ori  $1,$0,0x1111

   .org 0x50   
s2:
   ori  $1,$0,0x0004      #(5)$1 = 0x4
   beq  $3,$3,s3          # $3等于$3,所以会发生转移,目的地址是s3
   or   $1,$31,$0         #(6)$1 = 0x2c,这是延迟槽指令
   ori  $1,$0,0x1111
   ori  $1,$0,0x1100
2:
   ori  $1,$0,0x0007      #(9)$1 = 0x7
   ori  $1,$0,0x0008      #(10)$1 = 0x8
   bgtz $1,s4             # 此时$1为0x8,大于0,所以转移至标号s4处
   ori  $1,$0,0x0009      #(11)$1 = 0x9,这是延迟槽指令
   ori  $1,$0,0x1111
   ori  $1,$0,0x1100

   .org 0x80
s3:
   ori  $1,$0,0x0005      #(7)$1 = 0x5            
   bgez $1,2b             # 此时$1为0x5,大于0,所以转移至前面的标号2处
   ori  $1,$0,0x0006      #(8)$1 = 0x6,这是延迟槽指令
   ori  $1,$0,0x1111
   ori  $1,$0,0x1100

   .org 0x100
s4:
   ori  $1,$0,0x000a      #(12)$1 = 0xa              
   bgezal $3,s3           # 此时$3为0x80000000,小于0,所以不发生转移
   or   $1,$0,$31         #(13)$1 = 0x10c          
   ori  $1,$0,0x000b      #(14)$1 = 0xb
   ori  $1,$0,0x000c      #(15)$1 = 0xc
   ori  $1,$0,0x000d      #(16)$1 = 0xd
   ori  $1,$0,0x000e      #(17)$1 = 0xe
   bltz $3,s5             # 此时$3为0x80000000,小于0,所以发生转移,转移至s5处
   ori  $1,$0,0x000f      #(18)$1 = 0xf,这是延迟槽指令
   ori  $1,$0,0x1100


   .org 0x130
s5:
   ori  $1,$0,0x0010      #(19)$1 = 0x10
   blez $1,2b             # 此时$1为0x10,大于0,所以不发生转移
   ori  $1,$0,0x0011      #(20)$1 = 0x11
   ori  $1,$0,0x0012      #(21)$1 = 0x12
   ori  $1,$0,0x0013      #(22)$1 = 0x13
   bltzal $3,s6           # 此时$3为0x80000000,小于0,所以发生转移,转移到s6处
   or   $1,$0,$31         #(23)$1 = 0x14c,这是延迟槽指令
   ori  $1,$0,0x1100


   .org 0x160
s6:
   ori $1,$0,0x0014       #(24)$1 = 0x14
   nop
   
   
    
_loop:
   j _loop
   nop
로그인 후 복사

      上面的测试程序使用到了所有的分支指令,程序的注释给出了寄存器$1的变化情况,及指令执行顺序,注意寄存器$1的变化是按照注释中的序号顺序进行的。ModelSim仿真结果如图8-9所示,观察$1的变化可知OpenMIPS正确实现了分支指令。

自己动手写CPU之第八阶段(4)转移指令实现过程2


至此,转移指令也实现完毕了,下一步将实现加载存储指令,敬请关注!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
2 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
2 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
2 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Terraria에서 명령을 사용하여 아이템을 얻는 방법은 무엇입니까? -테라리아에서 아이템을 수집하는 방법은 무엇인가요? Terraria에서 명령을 사용하여 아이템을 얻는 방법은 무엇입니까? -테라리아에서 아이템을 수집하는 방법은 무엇인가요? Mar 19, 2024 am 08:13 AM

Terraria에서 명령을 사용하여 아이템을 얻는 방법은 무엇입니까? 1. 테라리아에서 아이템을 주는 명령은 무엇인가요? 테라리아 게임에서 아이템에 명령을 내리는 것은 매우 실용적인 기능입니다. 이 명령을 통해 플레이어는 몬스터와 싸우거나 특정 위치로 순간이동할 필요 없이 필요한 아이템을 직접 얻을 수 있습니다. 이를 통해 시간을 크게 절약하고, 게임 효율성을 향상시키며, 플레이어가 세계를 탐험하고 건설하는 데 더 집중할 수 있습니다. 전반적으로 이 기능은 게임 경험을 더 부드럽고 즐겁게 만듭니다. 2. Terraria를 사용하여 아이템 명령을 내리는 방법 1. 게임을 열고 게임 인터페이스로 들어갑니다. 2. 키보드의 "Enter" 키를 눌러 채팅창을 엽니다. 3. 채팅창에 "/give[플레이어 이름][아이템 ID][아이템 수량]" 명령 형식을 입력하세요.

CPU를 너무 많이 점유하는 WIN10 서비스 호스트의 동작 과정 CPU를 너무 많이 점유하는 WIN10 서비스 호스트의 동작 과정 Mar 27, 2024 pm 02:41 PM

1. 먼저 작업 표시줄의 빈 공간을 마우스 오른쪽 버튼으로 클릭하고 [작업 관리자] 옵션을 선택하거나, 시작 로고를 마우스 오른쪽 버튼으로 클릭한 후 [작업 관리자] 옵션을 선택합니다. 2. 열린 작업 관리자 인터페이스에서 맨 오른쪽에 있는 [서비스] 탭을 클릭합니다. 3. 열린 [서비스] 탭에서 아래의 [서비스 열기] 옵션을 클릭하세요. 4. 열리는 [서비스] 창에서 [InternetConnectionSharing(ICS)] 서비스를 마우스 오른쪽 버튼으로 클릭한 후 [속성] 옵션을 선택하세요. 5. 열리는 속성 창에서 [연결 프로그램]을 [사용 안 함]으로 변경하고 [적용]을 클릭한 후 [확인]을 클릭하세요. 6. 시작 로고를 클릭한 후 종료 버튼을 클릭하고 [다시 시작]을 선택한 후 컴퓨터를 다시 시작합니다.

144코어, 3D 스택 SRAM: Fujitsu, 차세대 데이터 센터 프로세서 MONAKA 자세히 설명 144코어, 3D 스택 SRAM: Fujitsu, 차세대 데이터 센터 프로세서 MONAKA 자세히 설명 Jul 29, 2024 am 11:40 AM

28일 본 홈페이지 소식에 따르면 외신 테크레이더(TechRader)는 후지쯔가 2027년 출하 예정인 FUJITSU-MONAKA(이하 MONAKA) 프로세서를 자세하게 소개했다고 보도했다. MONAKACPU는 "클라우드 네이티브 3D 매니코어" 아키텍처를 기반으로 하며 Arm 명령어 세트를 채택합니다. 이는 데이터 센터, 엣지 및 통신 분야를 지향하며 메인프레임 수준의 RAS1을 구현할 수 있습니다. Fujitsu는 MONAKA가 에너지 효율성과 성능의 도약을 이룰 것이라고 밝혔습니다. 초저전압(ULV) 기술 등의 기술 덕분에 CPU는 2027년에 경쟁 제품보다 2배의 에너지 효율성을 달성할 수 있으며 냉각에는 수냉이 필요하지 않습니다. ; 게다가 프로세서의 애플리케이션 성능도 상대보다 두 배나 뛰어납니다. 지침 측면에서 MONAKA에는 벡터가 장착되어 있습니다.

누출로 Intel Arrow Lake-U, -H, -HX 및 -S의 주요 사양 공개 누출로 Intel Arrow Lake-U, -H, -HX 및 -S의 주요 사양 공개 Jun 15, 2024 pm 09:49 PM

Intel Arrow Lake는 Lunar Lake와 동일한 프로세서 아키텍처를 기반으로 할 것으로 예상됩니다. 즉, Intel의 새로운 LionCove 성능 코어가 경제적인 Skymont 효율성 코어와 결합될 것입니다. Lunar Lake는 Ava에서만 사용할 수 있습니다.

AM4는 죽기를 거부하고 AMD는 최대 4.8GHz 클럭의 Ryzen 9 5900XT/7 5800XT를 출시할 것이라고 뉴스에 나와 있습니다. AM4는 죽기를 거부하고 AMD는 최대 4.8GHz 클럭의 Ryzen 9 5900XT/7 5800XT를 출시할 것이라고 뉴스에 나와 있습니다. Jun 05, 2024 pm 09:43 PM

6월 1일 이 웹사이트의 뉴스에 따르면, @CodeCommando 소스는 오늘 Computex2024 이벤트에서 AMD의 다가오는 프레젠테이션 문서의 일부 스크린샷을 공유하면서 트윗의 내용은 "AM4는 결코 죽지 않을 것입니다"였으며 첨부된 사진에는 두 가지 새로운 내용이 나와 있었습니다. Ryzen5000XT 시리즈 프로세서. 스크린샷에 따르면 다음 두 가지 제품이 표시됩니다. Ryzen95900XTR Ryzen95900XT는 AMD의 Ryzen95950X보다 클럭 속도가 약간 낮은 새로운 16코어 AM4 프로세서입니다. Ryzen75800XT AMD의 기존 Ryzen75800X 프로세서보다 더 빠른 변형입니다. 두 프로세서 모두 최대 4.8G까지 클럭됩니다.

Huawei 휴대폰에서 이중 WeChat 로그인을 구현하는 방법은 무엇입니까? Huawei 휴대폰에서 이중 WeChat 로그인을 구현하는 방법은 무엇입니까? Mar 24, 2024 am 11:27 AM

Huawei 휴대폰에서 이중 WeChat 로그인을 구현하는 방법은 무엇입니까? 소셜 미디어의 등장으로 WeChat은 사람들의 일상 생활에 없어서는 안될 커뮤니케이션 도구 중 하나가 되었습니다. 그러나 많은 사람들이 동일한 휴대폰에서 동시에 여러 WeChat 계정에 로그인하는 문제에 직면할 수 있습니다. Huawei 휴대폰 사용자의 경우 듀얼 WeChat 로그인을 달성하는 것은 어렵지 않습니다. 이 기사에서는 Huawei 휴대폰에서 듀얼 WeChat 로그인을 달성하는 방법을 소개합니다. 우선, 화웨이 휴대폰과 함께 제공되는 EMUI 시스템은 듀얼 애플리케이션 열기라는 매우 편리한 기능을 제공합니다. 앱 듀얼 오픈 기능을 통해 사용자는 동시에

Chrome 브라우저의 높은 CPU 사용량 문제에 대한 완벽한 솔루션 Chrome 브라우저의 높은 CPU 사용량 문제에 대한 완벽한 솔루션 Mar 14, 2024 pm 12:25 PM

컴퓨터가 실행 중일 때 일부 사용자는 작업 관리자에서 Chrome이 매우 높은 CPU를 점유하는 것을 발견합니다. 시간 내에 처리되지 않으면 컴퓨터가 점점 더 멈추거나 정지될 수도 있습니다. 그렇다면 Chrome 브라우저의 높은 CPU 사용량을 처리하는 방법은 무엇입니까? 이 문제를 함께 살펴보겠습니다. Google Chrome의 높은 CPU 사용량 문제는 일반적으로 작업 관리자에서 "SoftwareReporterTool"이 비정상적으로 실행되기 때문에 발생합니다. 이 도구는 실제로 불필요하거나 유해한 확장 프로그램, 애플리케이션 또는 홈페이지 하이재커 등을 정리하는 데 사용되는 Chrome 브라우저 정리 도구입니다. Chrome이 설치되면 Software_reporter_tool.exe도 SwR에 다운로드됩니다.

2024년 최신 CPU 래더차트 공유(상세고화질) 2024년 최신 CPU 래더차트 공유(상세고화질) Mar 13, 2024 pm 08:19 PM

게임 성능 수준은 CPU와 많은 관련이 있습니다. 게임을 좋아하는 사용자의 경우 CPU 성능이 컴퓨터 구성의 초점이며, 특히 LOL 및 CS:GO의 경우 직접적으로 살펴보는 것이 더 정확하고 객관적입니다. 일부 대규모 3D 게임의 핵심 성능은 주로 그래픽 카드 + CPU 스케줄링에 따라 달라지므로 어떤 CPU가 더 나은 성능을 발휘합니까? 이 기사에서는 천체 지도를 소개합니다. CPU 래더 다이어그램의 최신 고화질 풀 버전

See all articles