【Redis笔记】第5篇:redis监控工具-redissentinel使用说明及注意
相信通过前面4篇笔记,大家对redis的基本概念及配置已经有了解,本篇笔记重点说明如何通过官方发布的redis sentinel工具来监控redis的运行状态。另外,对sentinel使用过程中的注意事项做些讨论。 1. Redis Sentinel功能 Redis Sentinel是一套用于管理Redis实
相信通过前面4篇笔记,大家对redis的基本概念及配置已经有了解,本篇笔记重点说明如何通过官方发布的redis sentinel工具来监控redis的运行状态。另外,对sentinel使用过程中的注意事项做些讨论。
1. Redis Sentinel功能Redis Sentinel是一套用于管理Redis实例的分布式系统,主要完成3项任务:
1) Monitoring:持续监控Redis master或slave实例的运行情况是否符合预期
2) Notification:若被监控的Redis实例运行异常,sentinel会通过API通知外界(人或程序)
3) Automation failover:若master实例故障,sentinel会重新选主并启动自动故障切换:选择slave-priority最小的那个slave实例并将其提升为master,同时修改其它slave的配置,使其master配置项指向新的master,当old master恢复重启后,会自动降级为new master的slave。最后,根据配置,Redis Sentinel还会将新的master地址通知给当前正在访问Redis的应用程序。
2. Redis Sentinel部署
Sentinel作为一个分布式系统工具,建议多机房多机部署。
每个sentinel实例主要有6个配置项,按Redis集群的实际部署情况进行配置即可,示例如下:
port 26329 sentinel monitor mymaster 127.0.0.1 6379 2 sentinel down-after-milliseconds mymaster 60000 sentinel failover-timeout mymaster 180000 sentinel parallel-syncs mymaster sentinel notification-script <master-name> <script-path>
port: 指定sentinel的侦听端口(即与redis server或client建立tcp连接的端口)
monitor: 指定sentinel要monitor的redis实例,包括一个redis实例的别名(alias)及redis实例的ip+port,该行最后的数字2表示至少2个setinel实例同时检测到redis server异常时,才将redis server的状态判决为real fail。也即,若这里配置为2,但实际部署中sentinel只部署了1套,则即使redis实例已经挂掉,sentinel也不会给出任何警告。这一点需要特别引起注意。
down-after-milliseconds: 指定sentinel监控到redis实例持续异常多长时间后,会判决其状态为down。若实际业务需要sentinel尽快判决出redis实例异常,则该值可适当配小。
failover-timeout: 若sentinel在该配置值内未能完成failover操作(即故障时master/slave自动切换),则认为本次failover失败。该配置有4个用途,具体可参考sentinel.conf中的说明,限于篇幅,此处不再赘述。
parallel-syncs: 指定failover过程中,同时被sentinel reconfigure的最大slave实例数。由于reconfigure过程中,对应的slave会中断响应客户端请求,故为避免所有的slave同时不可用,该值需适当配小。
notification-script: 指定sentinel检测到master-name指向的实例异常时,调用的报警脚本。该配置项可选,但线上系统建议配置。
2.2 启动监控系统
配置文件修改完成后,启动各监控进程即可,例如:
nohup ./bin/redis-sentinel ./conf/sentinel.conf > ./log/redis-sentinel.log 2>&1 &
2.3 sentinel使用场景实测
为调研并掌握sentinel用法,我搭建了redis测试环境并做了一系列实验,下面对实验情况做详细说明。
特别说明:由于下面的内容可能会涉及到公司内网地址,故为避免不必要的麻烦,文字或截图出现ip地址的地方做了涂抹,但不影响说明问题。
实验环境(one master / two slaves / two sentinels):
a. 一个master(slave-priority为100)部署在ip为xx.xx.234.67的机器上;
b. 两个slaves(slave-priority分别为90/100)的均部署在ip为xx.xx.234.49的机器上;
c. 启用两个sentinel进程监控redis集群状态
做了6种case的测试,结果说明如下:
Case1: 依次启动master进程及2个slave进程后,再启动2个sentinel进程,sentinel可以正常识别出主从关系
Case2: 用shutdown命令停掉master,则sentinel自动选slave-priority小的那个slave进程为new master,同时,自动将另一个slave进程的master指向该new master
Case3: 在case2基础上,重启old master,sentinel会将其降级为slave,其master指向case2选出的新主
Case4: 将master和2个slave实例的slave-priority配为互不相同的值,在Case1基础上,shutdown当前的master,在sentinel已选出新主且reconfigure其它实例使它们指向新主后(从old master异常到触发sentinel重新选主的时间由用户通过sentinel.conf的down-after-milliseconds配置项指定),重启old master,系统最终状态与Case3一致,即old master已降级为slave,其master指向sentinel选出的新主。若在sentinel已选出新主但尚未完成其它实例的reconfigure之前,重启old master,则整个系统会出现无法选出new master的异常,详情见下面Case5的描述。
Case5: 将master和2个slave实例的slave-priority均配为相同的值,在Case1基础上,shutdown当前的master,在sentinel已选出新主且reconfigure其它实例使它们指向新主后,重启old master,系统最终状态与Case3一致,即old master已降级为slave,其master指向sentinel选出的新主。在所有slave-priority配置为相同值的情况下,sentinel会将各slave实例中runid最小的slave提升为master(前提是该slave对应的redis.conf中允许其被promote为master)。与Case4出现的异常情况类似,若在sentinel选出新主但尚未完成其它实例的reconfigure之前,重启old master,会发现sentinel的自动故障切换机制已然凌乱了。
详细的异常情况如下所述。
old master部署在ip为xx.xx.234.67的机器上且port默认为6379,sentinel切换异常后,对该old master执行info命令输出如下:

slave-00实例在ip为xx.xx.234.49的机器上且port配为6378,sentinel切换异常后,info输出如下:

slave-01实例在ip为xx.xx.234.49的机器上(与slave-00同机部署)且port配为6377,info输出如下:

从上面3个redis实例的输出情况看,3个均认为自己是slave,整个系统无主!其中,位于xx.xx.234.67的old master(注意上面第1图的master_host字段)和位于xx.xx.234.49的salve-00(注意上面第2图的master_host字段)均认为slave-01为new master,而位于xx.xx.234.49的slave-01则认为自己仍然为slave,认为old master目前还是master(注意上面第3图的master_host字段)。
从sentinel进程日志看,其无法选出新主,即sentinel无法确认两个master candidates到底哪个是new master,在两个实例间频繁切换:

这种情况务在实际运维时务必要引起注意!
Case 6: 在系统已进入Case5所示的异常状态后,shutdown两个master candidates中的一个实例,sentinel仍然无法正常选主,直至3个实例全部shutdown,整个系统仍然无主。基本可以确定监控系统内部逻辑状态已经混乱了。
2.4 结论
若master实例故障,则最好等sentinel选出new master且稳定后(选新主并完成切换的时间与配置有关,典型值在1分钟之内),再重启old master,避免引发sentinel的误判,导致整个系统无法选出new master。
【参考资料】
1. Redis Sentinel Documentation

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











데비안 시스템의 readdir 함수는 디렉토리 컨텐츠를 읽는 데 사용되는 시스템 호출이며 종종 C 프로그래밍에 사용됩니다. 이 기사에서는 ReadDir를 다른 도구와 통합하여 기능을 향상시키는 방법을 설명합니다. 방법 1 : C 언어 프로그램을 파이프 라인과 결합하고 먼저 C 프로그램을 작성하여 readDir 함수를 호출하고 결과를 출력하십시오.#포함#포함#포함#포함#includinTmain (intargc, char*argv []) {dir*dir; structdirent*entry; if (argc! = 2) {

이 기사에서는 데비안 시스템에서 Hadoop 데이터 처리 효율성을 향상시키는 방법에 대해 설명합니다. 최적화 전략에는 하드웨어 업그레이드, 운영 체제 매개 변수 조정, Hadoop 구성 수정 및 효율적인 알고리즘 및 도구 사용이 포함됩니다. 1. 하드웨어 리소스 강화는 모든 노드에 일관된 하드웨어 구성, 특히 CPU, 메모리 및 네트워크 장비 성능에주의를 기울일 수 있도록합니다. 전반적인 처리 속도를 향상시키기 위해서는 고성능 하드웨어 구성 요소를 선택하는 것이 필수적입니다. 2. 운영 체제 조정 파일 설명 자 및 네트워크 연결 : /etc/security/limits.conf 파일을 수정하여 파일 설명자의 상한을 늘리고 동시에 시스템에 의해 열 수 있습니다. JVM 매개 변수 조정 : Hadoop-env.sh 파일에서 조정

Debian Mail 서버에 SSL 인증서를 설치하는 단계는 다음과 같습니다. 1. OpenSSL 툴킷을 먼저 설치하십시오. 먼저 OpenSSL 툴킷이 이미 시스템에 설치되어 있는지 확인하십시오. 설치되지 않은 경우 다음 명령을 사용하여 설치할 수 있습니다. 개인 키 및 인증서 요청 생성 다음에 다음, OpenSSL을 사용하여 2048 비트 RSA 개인 키 및 인증서 요청 (CSR)을 생성합니다.

웹 사이트 성능 최적화는 액세스 로그의 심층 분석과 분리 할 수 없습니다. NGINX 로그는 웹 사이트를 방문하는 사용자의 자세한 정보를 기록합니다. 이 데이터를 영리하게 사용하면 웹 사이트의 속도가 효과적으로 향상 될 수 있습니다. 이 기사는 NGINX 로그를 기반으로 여러 웹 사이트 성능 최적화 방법을 소개합니다. 1. 사용자 행동 분석 및 최적화. NGINX 로그를 분석하여 사용자 동작에 대한 깊은 이해를 얻고이를 기반으로 목표 최적화를 수행 할 수 있습니다. 고주파 액세스 IP 식별 : 액세스 빈도가 가장 높은 IP 주소를 찾고, 대역폭 증가 또는 특정 콘텐츠의 응답 속도 향상과 같은 이러한 IP 주소의 서버 리소스 구성을 최적화합니다. 상태 코드 분석 : 다른 HTTP 상태 코드 (예 : 404 오류)의 빈도를 분석하고 웹 사이트 탐색 또는 컨텐츠 관리의 문제를 찾고 진행하십시오.

데비안 시스템에서 Zookeeper 버전을 업그레이드하면 아래 단계를 따라갈 수 있습니다. 1. 기존 구성 및 데이터를 백업하면 업그레이드하기 전에 기존 Zookeeper 구성 파일 및 데이터 디렉토리를 백업하는 것이 좋습니다. sudocp-r/var/lib/Zookeeper/var/lib/Zookeeper_backupsudocp/etc/ketokeeper/conf/zoo.cfg/etc/Zookeokeeper/conf/Zookeeper/z

Debian Systems에서 OpenSSL은 암호화, 암호 해독 및 인증서 관리를위한 중요한 라이브러리입니다. MITM (Man-in-the-Middle Attack)을 방지하려면 다음 측정을 수행 할 수 있습니다. HTTPS 사용 : 모든 네트워크 요청이 HTTP 대신 HTTPS 프로토콜을 사용하도록하십시오. HTTPS는 TLS (Transport Layer Security Protocol)를 사용하여 통신 데이터를 암호화하여 전송 중에 데이터가 도난 당하거나 변조되지 않도록합니다. 서버 인증서 확인 : 클라이언트의 서버 인증서를 수동으로 확인하여 신뢰할 수 있는지 확인하십시오. 서버는 대의원 메소드를 통해 수동으로 확인할 수 있습니다.

Debian에서 Hadoop 로그 관리하면 다음 단계 및 모범 사례를 따라갈 수 있습니다. 로그 집계 로그 집계 : Yarn-site.xml 파일에서 Ture에서 True로 설정 할 수 있도록 설정 : 로그 집계를 활성화하십시오. 로그 보유 정책 구성 : 172800 초 (2 일)와 같이 로그의 유지 시간을 정의하기 위해 yarn.log-aggregation.retain-seconds를 설정하십시오. 로그 저장 경로를 지정하십시오 : Yarn.n을 통해

균형 잡힌 하드웨어 리소스 : HDFS 클러스터의 각 Datanode 노드의 하드웨어 리소스 (예 : CPU, 메모리, 디스크 용량 등)를 확인하여 Debian에 대한 Hadoop 데이터 현지화를 개선 할 수 있습니다. 데이터 쓰기 전략 최적화 : 노드의로드 조건 및 사용 가능한 리소스를 기반으로 스토리지를 위해 Datanode 노드를 동적으로 선택하는 등 HDFS 데이터 작성 전략을 합리적으로 구성합니다. 밸런서 도구 사용 : HD를 활용합니다
