데이터 베이스 MySQL 튜토리얼 coursera Machine Learning ex2

coursera Machine Learning ex2

Jun 07, 2016 pm 03:36 PM

这次的作业为Logistic Regression的具体实现。 1 Logistic Regression 1.2 Implementatiion 1.2.1 Warm up 既然都说是热身了,那么也就一扫而过吧。在sigmoid.m中添加如下代码: g = 1./(1 + e.^-z); 这段代码就是sigmoid函数的具体实现,对矩阵同样适用。 1

这次的作业为Logistic Regression的具体实现。

1 Logistic Regression

1.2 Implementatiion

1.2.1 Warm up

既然都说是热身了,那么也就一扫而过吧。在sigmoid.m中添加如下代码:

g = 1./(1 + e.^-z);
로그인 후 복사

这段代码就是sigmoid函数的具体实现,对矩阵同样适用。


1.2.2 Cost Function and gradient

和ex1类似,接下里就是实现代价函数和梯度下降的公式,只要注意好矩阵的操作即可,在costfunction.m中添加如下代码:

Hx = sigmoid(X * theta);
J = 1/m * (-y'*log(Hx)-(1-y')*log(1-Hx));
grad = 1/m * ((Hx - y)' * X);
로그인 후 복사

1.2.3 Learning paramters using fminunc

并无需要我们自己写的代码,只是讲解了一下如何使用octave自带的fminunc来找到使得代价函数J最小的参数θ,给出的具体代码如下:

%  Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400);

%  Run fminunc to obtain the optimal theta
%  This function will return theta and the cost 
[theta, cost] = ...
	fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
로그인 후 복사
稍微解释一下这段代码,第一句话是在设置fminunc的一些参数,把'GradObj'这个参数设置为on,这样就告诉了fminunc函数要同时返回具体的代价函数的值和梯度,也让fminunc函数在寻找最小化参数的时候可以使用梯度;后面把'MaxIter'参数设置为400,这样fminunc函数最多迭代400次。第二句话就是在具体调用fminunc函数,@(t)可以认为是将我们的代价函数作为一个参数传递了进去,t在代价函数中的位置就是theta的位置。

最后fminunc函数返回的参数构成的直线分割的效果如下:

coursera Machine Learning ex2


1.2.4 Evaluating logistic regression

可以看到我们已经完成了找到那条最好的划分曲线,那么我们将如何来评价我们找到的这条曲线的好坏呢?一种方法就是用这条曲线来对所有训练集中的元组进行判断,统计其正确率,于是我们在predict.m中添加如下代码:

Hx = sigmoid(X * theta);
for iter = 1:m
	if Hx(iter) >= 0.5
		p(iter) = 1;
	else
		p(iter) = 0;
	end;
end;
로그인 후 복사
这里是一个简单的循环,把结果根据阀值0.5进行二值化。


2 Regularized logistic regression

coursera Machine Learning ex2

如果我们在碰到这种问题的分类的时候,只有2个参数只能用直线进行划分的话显然不好,我们就不得不增加参数,比如x1*x2以及x1^2等,增加参数虽然能够更好的划分训练集,但是也会带来过度匹配(overfitting)的问题,下面的练习就会解决这个问题。

按照之前在正规化中的介绍,将会在代价函数中添加参数本身大小的影响,从而使得参数的大小都比较接近0,修改过的公式在视频和pgf都已列出,我们需要做的就是用Matlab语言实现之。代码如下(costFunctionReg.m):

Hx = sigmoid(X * theta);
J = 1/m * (-y'*log(Hx)-(1-y')*log(1-Hx)) + lambda/(2*m) * (theta(2:end)' * theta(2:end));

grad = 1/m * ((Hx - y)' * X) + lambda/m * theta'; 
grad(1) = grad(1) - lambda/m * theta(1);
로그인 후 복사

最后的效果如下:

coursera Machine Learning ex2

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Alter Table 문을 사용하여 MySQL에서 테이블을 어떻게 변경합니까? Alter Table 문을 사용하여 MySQL에서 테이블을 어떻게 변경합니까? Mar 19, 2025 pm 03:51 PM

이 기사는 MySQL의 Alter Table 문을 사용하여 열 추가/드롭 테이블/열 변경 및 열 데이터 유형 변경을 포함하여 테이블을 수정하는 것에 대해 설명합니다.

MySQL 연결에 대한 SSL/TLS 암호화를 어떻게 구성합니까? MySQL 연결에 대한 SSL/TLS 암호화를 어떻게 구성합니까? Mar 18, 2025 pm 12:01 PM

기사는 인증서 생성 및 확인을 포함하여 MySQL에 대한 SSL/TLS 암호화 구성에 대해 설명합니다. 주요 문제는 자체 서명 인증서의 보안 영향을 사용하는 것입니다. [문자 수 : 159]

MySQL에서 큰 데이터 세트를 어떻게 처리합니까? MySQL에서 큰 데이터 세트를 어떻게 처리합니까? Mar 21, 2025 pm 12:15 PM

기사는 MySQL에서 파티셔닝, 샤딩, 인덱싱 및 쿼리 최적화를 포함하여 대규모 데이터 세트를 처리하기위한 전략에 대해 설명합니다.

인기있는 MySQL GUI 도구는 무엇입니까 (예 : MySQL Workbench, Phpmyadmin)? 인기있는 MySQL GUI 도구는 무엇입니까 (예 : MySQL Workbench, Phpmyadmin)? Mar 21, 2025 pm 06:28 PM

기사는 MySQL Workbench 및 Phpmyadmin과 같은 인기있는 MySQL GUI 도구에 대해 논의하여 초보자 및 고급 사용자를위한 기능과 적합성을 비교합니다. [159 자].

드롭 테이블 문을 사용하여 MySQL에서 테이블을 어떻게 드롭합니까? 드롭 테이블 문을 사용하여 MySQL에서 테이블을 어떻게 드롭합니까? Mar 19, 2025 pm 03:52 PM

이 기사에서는 Drop Table 문을 사용하여 MySQL에서 테이블을 떨어 뜨리는 것에 대해 설명하여 예방 조치와 위험을 강조합니다. 백업 없이는 행동이 돌이킬 수 없으며 복구 방법 및 잠재적 생산 환경 위험을 상세하게합니다.

JSON 열에서 인덱스를 어떻게 생성합니까? JSON 열에서 인덱스를 어떻게 생성합니까? Mar 21, 2025 pm 12:13 PM

이 기사에서는 PostgreSQL, MySQL 및 MongoDB와 같은 다양한 데이터베이스에서 JSON 열에서 인덱스를 작성하여 쿼리 성능을 향상시킵니다. 특정 JSON 경로를 인덱싱하는 구문 및 이점을 설명하고 지원되는 데이터베이스 시스템을 나열합니다.

외국 키를 사용하여 관계를 어떻게 표현합니까? 외국 키를 사용하여 관계를 어떻게 표현합니까? Mar 19, 2025 pm 03:48 PM

기사는 외국 열쇠를 사용하여 데이터베이스의 관계를 나타내고 모범 사례, 데이터 무결성 및 피할 수있는 일반적인 함정에 중점을 둡니다.

일반적인 취약점 (SQL 주입, 무차별 적 공격)에 대해 MySQL을 어떻게 보호합니까? 일반적인 취약점 (SQL 주입, 무차별 적 공격)에 대해 MySQL을 어떻게 보호합니까? Mar 18, 2025 pm 12:00 PM

기사는 준비된 명령문, 입력 검증 및 강력한 암호 정책을 사용하여 SQL 주입 및 무차별 적 공격에 대한 MySQL 보안에 대해 논의합니다 (159 자)

See all articles