【理论】支持向量机2: Support Vector 介绍支持向量机目标
【原文:http://blog.pluskid.org/?p=682】 上一次介绍支持向量机,结果说到 Maximum Margin Classifier ,到最后都没有说“支持向量”到底是什么东西。不妨回忆一下上次最后一张图: 可以看到两个支撑着中间的 gap 的超平面,它们到中间的 separating hyper
【原文:http://blog.pluskid.org/?p=682】
上一次介绍支持向量机,结果说到 Maximum Margin Classifier ,到最后都没有说“支持向量”到底是什么东西。不妨回忆一下上次最后一张图:
可以看到两个支撑着中间的 gap 的超平面,它们到中间的 separating hyper plane 的距离相等(想想看:为什么一定是相等的?),即我们所能得到的最大的 geometrical margin
很显然,由于这些 supporting vector 刚好在边界上,所以它们是满足
当然,除了从几何直观上之外,支持向量的概念也会从其优化过程的推导中得到。其实上一次还偷偷卖了另一个关子就是虽然给出了目标函数,却没有讲怎么来求解。现在就让我们来处理这个问题。回忆一下之前得到的目标函数:
这个问题等价于(为了方便求解,我在这里加上了平方,还有一个系数,显然这两个问题是等价的,因为我们关心的并不是最优情况下目标函数的具体数值):
到这个形式以后,就可以很明显地看出来,它是一个凸优化问题,或者更具体地说,它是一个二次优化问题——目标函数是二次的,约束条件是线性的。这个问题可以用任何现成的 QP (Quadratic Programming) 的优化包进行求解。所以,我们的问题到此为止就算全部解决了,于是我睡午觉去了~
啊?呃,有人说我偷懒不负责任了?好吧,嗯,其实呢,虽然这个问题确实是一个标准的 QP 问题,但是它也有它的特殊结构,通过 Lagrange Duality 变换到对偶变量 (dual variable) 的优化问题之后,可以找到一种更加有效的方法来进行求解——这也是 SVM 盛行的一大原因,通常情况下这种方法比直接使用通用的 QP 优化包进行优化要高效得多。此外,在推导过程中,许多有趣的特征也会被揭露出来,包括刚才提到的 supporting vector 的问题。
关于 Lagrange duality 我没有办法在这里细讲了,可以参考 Wikipedia 。简单地来说,通过给每一个约束条件加上一个 Lagrange multiplier,我们可以将它们融和到目标函数里去
然后我们令
容易验证,当某个约束条件不满足时,例如
这里用
当然,交换以后的问题不再等价于原问题,这个新问题的最优值用 总之,第二个问题的最优值
首先要让
带回
此时我们得到关于 dual variable
如前面所说,这个问题有更加高效的优化算法,不过具体方法在这里先不介绍,让我们先来看看推导过程中得到的一些有趣的形式。首先就是关于我们的 hyper plane ,对于一个数据点
这里的形式的有趣之处在于,对于新点
为什么非支持向量对应的
注意到如果
嗯,于是呢,把所有的这些东西整合起来,得到的一个 maximum margin hyper plane classifier 就是支持向量机(Support Vector Machine),经过直观的感觉和数学上的推导,为什么叫“支持向量”,应该也就明了了吧?当然,到目前为止,我们的 SVM 还比较弱,只能处理线性的情况,不过,在得到了 dual 形式之后,通过 Kernel 推广到非线性的情况就变成了一件非常容易的事情了。不过,具体细节,还要留到下一次再细说了。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











현대 제조업에서 정확한 결함 검출은 제품 품질을 보장하는 열쇠일 뿐만 아니라 생산 효율성을 향상시키는 핵심이기도 합니다. 그러나 기존 결함 감지 데이터세트는 실제 적용에 필요한 정확성과 의미론적 풍부함이 부족한 경우가 많아 모델이 특정 결함 카테고리나 위치를 식별할 수 없게 됩니다. 이 문제를 해결하기 위해 광저우 과학기술대학교와 Simou Technology로 구성된 최고 연구팀은 산업 결함에 대한 상세하고 의미론적으로 풍부한 대규모 주석을 제공하는 "DefectSpectrum" 데이터 세트를 혁신적으로 개발했습니다. 표 1에서 볼 수 있듯이, 다른 산업 데이터 세트와 비교하여 "DefectSpectrum" 데이터 세트는 가장 많은 결함 주석(5438개의 결함 샘플)과 가장 상세한 결함 분류(125개의 결함 카테고리)를 제공합니다.

오픈 LLM 커뮤니티는 백개의 꽃이 피어 경쟁하는 시대입니다. Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 등을 보실 수 있습니다. 훌륭한 연기자. 그러나 GPT-4-Turbo로 대표되는 독점 대형 모델과 비교하면 개방형 모델은 여전히 많은 분야에서 상당한 격차를 보이고 있습니다. 일반 모델 외에도 프로그래밍 및 수학을 위한 DeepSeek-Coder-V2, 시각 언어 작업을 위한 InternVL과 같이 핵심 영역을 전문으로 하는 일부 개방형 모델이 개발되었습니다.

AI의 경우 수학 올림피아드는 더 이상 문제가 되지 않습니다. 목요일에 Google DeepMind의 인공 지능은 AI를 사용하여 올해 국제 수학 올림피아드 IMO의 실제 문제를 해결하는 위업을 달성했으며 금메달 획득에 한 걸음 더 다가섰습니다. 지난 주 막 끝난 IMO 대회에는 대수학, 조합론, 기하학, 수론 등 6개 문제가 출제됐다. 구글이 제안한 하이브리드 AI 시스템은 4문제를 맞혀 28점을 얻어 은메달 수준에 이르렀다. 이달 초 UCLA 종신 교수인 테렌스 타오(Terence Tao)가 상금 100만 달러의 AI 수학 올림피아드(AIMO Progress Award)를 추진했는데, 예상외로 7월 이전에 AI 문제 해결 수준이 이 수준으로 향상됐다. IMO에서 동시에 질문을 해보세요. 가장 정확하게 하기 어려운 것이 IMO인데, 역사도 가장 길고, 규모도 가장 크며, 가장 부정적이기도 합니다.

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

Editor | ScienceAI 제한된 임상 데이터를 기반으로 수백 개의 의료 알고리즘이 승인되었습니다. 과학자들은 누가 도구를 테스트해야 하며 최선의 방법은 무엇인지에 대해 토론하고 있습니다. 데빈 싱(Devin Singh)은 응급실에서 오랜 시간 치료를 기다리던 중 심장마비를 겪는 소아환자를 목격했고, 이를 계기로 대기시간을 단축하기 위해 AI 적용을 모색하게 됐다. SickKids 응급실의 분류 데이터를 사용하여 Singh과 동료들은 잠재적인 진단을 제공하고 테스트를 권장하는 일련의 AI 모델을 구축했습니다. 한 연구에 따르면 이러한 모델은 의사 방문 속도를 22.3% 단축하여 의료 검사가 필요한 환자당 결과 처리 속도를 거의 3시간 단축할 수 있는 것으로 나타났습니다. 그러나 인공지능 알고리즘의 연구 성공은 이를 입증할 뿐이다.

Editor |KX 오늘날까지 단순한 금속부터 큰 막 단백질에 이르기까지 결정학을 통해 결정되는 구조적 세부 사항과 정밀도는 다른 어떤 방법과도 비교할 수 없습니다. 그러나 가장 큰 과제인 소위 위상 문제는 실험적으로 결정된 진폭에서 위상 정보를 검색하는 것입니다. 덴마크 코펜하겐 대학의 연구원들은 결정 위상 문제를 해결하기 위해 PhAI라는 딥러닝 방법을 개발했습니다. 수백만 개의 인공 결정 구조와 그에 상응하는 합성 회절 데이터를 사용하여 훈련된 딥러닝 신경망은 정확한 전자 밀도 맵을 생성할 수 있습니다. 연구는 이 딥러닝 기반의 순순한 구조 솔루션 방법이 단 2옹스트롬의 해상도로 위상 문제를 해결할 수 있음을 보여줍니다. 이는 원자 해상도에서 사용할 수 있는 데이터의 10~20%에 해당하는 반면, 기존의 순순한 계산은

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

저자 | 편집자 홍콩 중문 대학교 | ScienceAI 최근 홍콩 중문 대학교와 Zhiyuan은 3D 의료 이미지를 홍보하기 위해 M3D-Data, M3D-LaMed 및 M3D-Bench를 포함한 M3D 시리즈 작업을 제안했습니다. 데이터 세트, 모델 및 평가의 모든 측면에서 분석 개발. (1) M3D-Data는 현재 M3D-Cap(120K3D 이미지 및 텍스트 쌍), M3D-VQA(510K 질문 및 답변 쌍), M3D-Seg(150K3DMask), M3D-RefSeg( 3K 추론 세분화) 총 4개의 하위 데이터 세트. (2) M3D-LaMed는 현재 가장 다재다능한 3D 의료용 다중 모드 대형 모델입니다.
