데이터 베이스 MySQL 튜토리얼 BP神经网络算法(2)

BP神经网络算法(2)

Jun 07, 2016 pm 03:49 PM
신경망 연산

// BpNet.h:interfacefortheBpclass. // // E-Mail:zengzhijun369@163.com /**/ ///////////////////////////////////////////////////////////////////// / #include stdafx.h #include BpNet.h #include math.h #ifdef_DEBUG #undef THIS_FILE static char

 

//BpNet.h: interface for the Bp class.
BP神经网络算法(2)
//
BP神经网络算法(2)
//E-Mail:zengzhijun369@163.com
BP神经网络算法(2)BP神经网络算法(2)
/**///////////////////////////////////////////////////////////////////////
BP神经网络算法(2)#include "stdafx.h"
BP神经网络算法(2)#include 
"BpNet.h"
BP神经网络算法(2)#include 
"math.h"
BP神经网络算法(2)
BP神经网络算法(2)#ifdef _DEBUG
BP神经网络算法(2)
#undef THIS_FILE
BP神经网络算法(2)
static char THIS_FILE[]=__FILE__;
BP神经网络算法(2)
#define new DEBUG_NEW
BP神经网络算法(2)
#endif
BP神经网络算法(2)
BP神经网络算法(2)BP神经网络算法(2)
/**///////////////////////////////////////////////////////////////////////
BP神经网络算法(2)// Construction/Destruction
BP神经网络算法(2)BP神经网络算法(2)
/**///////////////////////////////////////////////////////////////////////
BP神经网络算法(2)
BP神经网络算法(2)BpNet::BpNet()
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){       
BP神经网络算法(2)    error
=1.0;
BP神经网络算法(2)    e
=0.0;
BP神经网络算法(2)    
BP神经网络算法(2)    rate_w
=0.05;  //权值学习率(输入层--隐含层)
BP神经网络算法(2)
    rate_w1=0.047//权值学习率 (隐含层--输出层)
BP神经网络算法(2)
    rate_b1=0.05//隐含层阀值学习率
BP神经网络算法(2)
    rate_b2=0.047//输出层阀值学习率
BP神经网络算法(2)
    error=1.0;
BP神经网络算法(2)    e
=0.0;
BP神经网络算法(2)    
BP神经网络算法(2)    rate_w
=0.05;  //权值学习率(输入层--隐含层)
BP神经网络算法(2)
    rate_w1=0.047//权值学习率 (隐含层--输出层)
BP神经网络算法(2)
    rate_b1=0.05//隐含层阀值学习率
BP神经网络算法(2)
    rate_b2=0.047//输出层阀值学习率
BP神经网络算法(2)
}

BP神经网络算法(2)
BP神经网络算法(2)BpNet::
~BpNet()
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){
BP神经网络算法(2)    
BP神经网络算法(2)}

BP神经网络算法(2)
BP神经网络算法(2)
void winit(double w[],int sl)//权值初始化
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){int i;
BP神经网络算法(2)
double randx();
BP神经网络算法(2)BP神经网络算法(2)
for(i=0;isl;i++)BP神经网络算法(2){
BP神经网络算法(2)    
*(w+i)=0.2*randx();
BP神经网络算法(2)}

BP神经网络算法(2)}

BP神经网络算法(2)
BP神经网络算法(2)
double randx()//kqy error
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){double d;
BP神经网络算法(2)d
=(double) rand()/32767.0;
BP神经网络算法(2)
return d;
BP神经网络算法(2)}

BP神经网络算法(2)
BP神经网络算法(2)
void BpNet::init()
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){
BP神经网络算法(2)    winit((
double*)w,innode*hidenode);
BP神经网络算法(2)    winit((
double*)w1,hidenode*outnode);
BP神经网络算法(2)    winit(b1,hidenode);
BP神经网络算法(2)    winit(b2,outnode);
BP神经网络算法(2)}

BP神经网络算法(2)
BP神经网络算法(2)
BP神经网络算法(2)
void BpNet::train(double p[trainsample][innode],double t[trainsample][outnode])
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){
BP神经网络算法(2)    
double pp[hidenode];//隐含结点的校正误差
BP神经网络算法(2)
    double qq[outnode];//希望输出值与实际输出值的偏差
BP神经网络算法(2)
    double yd[outnode];//希望输出值
BP神经网络算法(2)
    
BP神经网络算法(2)    
double x[innode]; //输入向量
BP神经网络算法(2)
    double x1[hidenode];//隐含结点状态值
BP神经网络算法(2)
    double x2[outnode];//输出结点状态值
BP神经网络算法(2)
    double o1[hidenode];//隐含层激活值
BP神经网络算法(2)
    double o2[hidenode];//输出层激活值
BP神经网络算法(2)
    for(int isamp=0;isamptrainsample;isamp++)//循环训练一次样品
BP神经网络算法(2)BP神经网络算法(2)
    BP神经网络算法(2)
BP神经网络算法(2)        
for(int i=0;iinnode;i++)
BP神经网络算法(2)            x[i]
=p[isamp][i];
BP神经网络算法(2)        
for(i=0;ioutnode;i++)
BP神经网络算法(2)            yd[i]
=t[isamp][i];
BP神经网络算法(2)        
BP神经网络算法(2)        
//构造每个样品的输入和输出标准
BP神经网络算法(2)
        for(int j=0;jhidenode;j++)
BP神经网络算法(2)BP神经网络算法(2)        
BP神经网络算法(2){
BP神经网络算法(2)            o1[j]
=0.0;
BP神经网络算法(2)            
BP神经网络算法(2)            
for(i=0;iinnode;i++)
BP神经网络算法(2)                o1[j]
=o1[j]+w[i][j]*x[i];//隐含层各单元输入激活值
BP神经网络算法(2)
            x1[j]=1.0/(1+exp(-o1[j]-b1[j]));//隐含层各单元的输出kqy1
BP神经网络算法(2)            
//    if(o1[j]+b1[j]>0) x1[j]=1;
BP神经网络算法(2)            
//else x1[j]=0;
BP神经网络算法(2)
        }

BP神经网络算法(2)        
BP神经网络算法(2)        
for(int k=0;koutnode;k++)
BP神经网络算法(2)BP神经网络算法(2)        
BP神经网络算法(2){
BP神经网络算法(2)            o2[k]
=0.0;
BP神经网络算法(2)            
BP神经网络算法(2)            
for(j=0;jhidenode;j++)
BP神经网络算法(2)                o2[k]
=o2[k]+w1[j][k]*x1[j];//输出层各单元输入激活值
BP神经网络算法(2)
            x2[k]=1.0/(1.0+exp(-o2[k]-b2[k]));//输出层各单元输出
BP神经网络算法(2)            
//    if(o2[k]+b2[k]>0) x2[k]=1;
BP神经网络算法(2)            
//    else x2[k]=0;
BP神经网络算法(2)
        }

BP神经网络算法(2)        
BP神经网络算法(2)        
for(k=0;koutnode;k++)
BP神经网络算法(2)BP神经网络算法(2)        
BP神经网络算法(2){
BP神经网络算法(2)            e
=0.0;
BP神经网络算法(2)            qq[k]
=(yd[k]-x2[k])*x2[k]*(1.-x2[k]);//希望输出与实际输出的偏差
BP神经网络算法(2)
            e+=fabs(yd[k]-x2[k])*fabs(yd[k]-x2[k]);//计算均方差
BP神经网络算法(2)
            
BP神经网络算法(2)            
for(j=0;jhidenode;j++)
BP神经网络算法(2)                w1[j][k]
=w1[j][k]+rate_w1*qq[k]*x1[j];//下一次的隐含层和输出层之间的新连接权
BP神经网络算法(2)
            e=sqrt(e);
BP神经网络算法(2)            error
=e;
BP神经网络算法(2)        
BP神经网络算法(2)        }

BP神经网络算法(2)        
BP神经网络算法(2)        
for(j=0;jhidenode;j++)
BP神经网络算法(2)BP神经网络算法(2)        
BP神经网络算法(2){
BP神经网络算法(2)            pp[j]
=0.0;
BP神经网络算法(2)            
for(k=0;koutnode;k++)
BP神经网络算法(2)                pp[j]
=pp[j]+qq[k]*w1[j][k];
BP神经网络算法(2)            pp[j]
=pp[j]*x1[j]*(1-x1[j]);//隐含层的校正误差
BP神经网络算法(2)
            
BP神经网络算法(2)            
for(i=0;iinnode;i++)
BP神经网络算法(2)                w[i][j]
=w[i][j]+rate_w*pp[j]*x[i];//下一次的输入层和隐含层之间的新连接权
BP神经网络算法(2)
        }

BP神经网络算法(2)        
BP神经网络算法(2)        
for(k=0;koutnode;k++)
BP神经网络算法(2)            b2[k]
=b2[k]+rate_b2*qq[k];//下一次的隐含层和输出层之间的新阈值
BP神经网络算法(2)
        for(j=0;jhidenode;j++)
BP神经网络算法(2)            b1[j]
=b1[j]+rate_b1*pp[j];//下一次的输入层和隐含层之间的新阈值
BP神经网络算法(2)
        
BP神经网络算法(2)    }
//end isamp样品循环
BP神经网络算法(2)
    
BP神经网络算法(2)}

BP神经网络算法(2)BP神经网络算法(2)
/**////////////////////////////end train/////////////////////////////
BP神经网络算法(2)
BP神经网络算法(2)
/////////////////////////////////////////////////////////////////

BP神经网络算法(2)
BP神经网络算法(2)
double *BpNet::recognize(double *p)
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){   
BP神经网络算法(2)    
double x[innode]; //输入向量
BP神经网络算法(2)
    double x1[hidenode];//隐含结点状态值
BP神经网络算法(2)
    double x2[outnode];//输出结点状态值
BP神经网络算法(2)
    double o1[hidenode];//隐含层激活值
BP神经网络算法(2)
    double o2[hidenode];//输出层激活值
BP神经网络算法(2)

BP神经网络算法(2)    
for(int i=0;iinnode;i++)
BP神经网络算法(2)        x[i]
=p[i];
BP神经网络算法(2)    
for(int j=0;jhidenode;j++)
BP神经网络算法(2)BP神经网络算法(2)    
BP神经网络算法(2){
BP神经网络算法(2)        o1[j]
=0.0;
BP神经网络算法(2)        
BP神经网络算法(2)        
for(int i=0;iinnode;i++)
BP神经网络算法(2)            o1[j]
=o1[j]+w[i][j]*x[i];//隐含层各单元激活值
BP神经网络算法(2)
        x1[j]=1.0/(1.0+exp(-o1[j]-b1[j]));//隐含层各单元输出
BP神经网络算法(2)        
//if(o1[j]+b1[j]>0) x1[j]=1;
BP神经网络算法(2)        
//    else x1[j]=0;
BP神经网络算法(2)
    }

BP神经网络算法(2)    
BP神经网络算法(2)    
for(int k=0;koutnode;k++)
BP神经网络算法(2)BP神经网络算法(2)    
BP神经网络算法(2){
BP神经网络算法(2)        o2[k]
=0.0;
BP神经网络算法(2)        
for(int j=0;jhidenode;j++)
BP神经网络算法(2)            o2[k]
=o2[k]+w1[j][k]*x1[j];//输出层各单元激活值
BP神经网络算法(2)
        x2[k]=1.0/(1.0+exp(-o2[k]-b2[k]));//输出层各单元输出
BP神经网络算法(2)        
//if(o2[k]+b2[k]>0) x2[k]=1;
BP神经网络算法(2)        
//else x2[k]=0;
BP神经网络算法(2)
    }
 
BP神经网络算法(2)    
BP神经网络算法(2)    
for(k=0;koutnode;k++)
BP神经网络算法(2)BP神经网络算法(2)    
BP神经网络算法(2){
BP神经网络算法(2)        shuchu[k]
=x2[k];
BP神经网络算法(2)    }
 
BP神经网络算法(2)    
return shuchu;
BP神经网络算法(2)BP神经网络算法(2)}
/**/////////////////////////////end sim///////////////////////////
BP神经网络算法(2)
BP神经网络算法(2)
void BpNet::writetrain()
BP神经网络算法(2)BP神经网络算法(2)
BP神经网络算法(2){//曾志军 for 2006.7
BP神经网络算法(2)
    AfxMessageBox("你还没有训练呢,训练后再写吧!请不要乱写,除非你认为这次训练是最好的,否则会覆盖我训练好的权值,那样你又要花时间训练!");
BP神经网络算法(2)    AfxMessageBox(
"你认为这次训练结果是最好的,就存下来,下次就不要花时间训练了!",MB_YESNO,NULL);
BP神经网络算法(2)    FILE 
*stream0;
BP神经网络算法(2)    FILE 
*stream1;
BP神经网络算法(2)    FILE 
*stream2;
BP神经网络算法(2)    FILE 
*stream3;
BP神经网络算法(2)

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

YOLO는 불멸이다! YOLOv9 출시: 성능과 속도 SOTA~ YOLO는 불멸이다! YOLOv9 출시: 성능과 속도 SOTA~ Feb 26, 2024 am 11:31 AM

오늘날의 딥러닝 방법은 모델의 예측 결과가 실제 상황에 가장 가깝도록 가장 적합한 목적 함수를 설계하는 데 중점을 두고 있습니다. 동시에 예측을 위한 충분한 정보를 얻을 수 있도록 적합한 아키텍처를 설계해야 합니다. 기존 방법은 입력 데이터가 레이어별 특징 추출 및 공간 변환을 거치면 많은 양의 정보가 손실된다는 사실을 무시합니다. 이 글에서는 딥 네트워크를 통해 데이터를 전송할 때 중요한 문제, 즉 정보 병목 현상과 가역 기능을 살펴보겠습니다. 이를 바탕으로 다중 목표를 달성하기 위해 심층 네트워크에서 요구되는 다양한 변화에 대처하기 위해 PGI(Programmable Gradient Information) 개념을 제안합니다. PGI는 목적 함수를 계산하기 위해 대상 작업에 대한 완전한 입력 정보를 제공할 수 있으므로 네트워크 가중치를 업데이트하기 위한 신뢰할 수 있는 기울기 정보를 얻을 수 있습니다. 또한 새로운 경량 네트워크 프레임워크가 설계되었습니다.

CLIP-BEVFormer: BEVFormer 구조를 명시적으로 감독하여 롱테일 감지 성능을 향상시킵니다. CLIP-BEVFormer: BEVFormer 구조를 명시적으로 감독하여 롱테일 감지 성능을 향상시킵니다. Mar 26, 2024 pm 12:41 PM

위에 작성 및 저자의 개인적인 이해: 현재 전체 자율주행 시스템에서 인식 모듈은 중요한 역할을 합니다. 자율주행 시스템의 제어 모듈은 적시에 올바른 판단과 행동 결정을 내립니다. 현재 자율주행 기능을 갖춘 자동차에는 일반적으로 서라운드 뷰 카메라 센서, 라이더 센서, 밀리미터파 레이더 센서 등 다양한 데이터 정보 센서가 장착되어 다양한 방식으로 정보를 수집하여 정확한 인식 작업을 수행합니다. 순수 비전을 기반으로 한 BEV 인식 알고리즘은 하드웨어 비용이 저렴하고 배포가 용이하며, 출력 결과를 다양한 다운스트림 작업에 쉽게 적용할 수 있어 업계에서 선호됩니다.

C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 Jun 03, 2024 pm 01:25 PM

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

C++sort 함수의 기본 원리와 알고리즘 선택을 살펴보세요. C++sort 함수의 기본 원리와 알고리즘 선택을 살펴보세요. Apr 02, 2024 pm 05:36 PM

C++정렬 함수의 맨 아래 계층은 병합 정렬을 사용하고 복잡도는 O(nlogn)이며 빠른 정렬, 힙 정렬 및 안정 정렬을 포함한 다양한 정렬 알고리즘 선택을 제공합니다.

1.3ms는 1.3ms가 걸립니다! Tsinghua의 최신 오픈 소스 모바일 신경망 아키텍처 RepViT 1.3ms는 1.3ms가 걸립니다! Tsinghua의 최신 오픈 소스 모바일 신경망 아키텍처 RepViT Mar 11, 2024 pm 12:07 PM

논문 주소: https://arxiv.org/abs/2307.09283 코드 주소: https://github.com/THU-MIG/RepViTRepViT는 모바일 ViT 아키텍처에서 잘 작동하며 상당한 이점을 보여줍니다. 다음으로, 본 연구의 기여를 살펴보겠습니다. 기사에서는 경량 ViT가 일반적으로 시각적 작업에서 경량 CNN보다 더 나은 성능을 발휘한다고 언급했는데, 그 이유는 주로 모델이 전역 표현을 학습할 수 있는 MSHA(Multi-Head Self-Attention 모듈) 때문입니다. 그러나 경량 ViT와 경량 CNN 간의 아키텍처 차이점은 완전히 연구되지 않았습니다. 본 연구에서 저자는 경량 ViT를 효과적인

인공지능이 범죄를 예측할 수 있을까? CrimeGPT의 기능 살펴보기 인공지능이 범죄를 예측할 수 있을까? CrimeGPT의 기능 살펴보기 Mar 22, 2024 pm 10:10 PM

인공지능(AI)과 법 집행의 융합은 범죄 예방 및 탐지의 새로운 가능성을 열어줍니다. 인공지능의 예측 기능은 범죄 행위를 예측하기 위해 CrimeGPT(범죄 예측 기술)와 같은 시스템에서 널리 사용됩니다. 이 기사에서는 범죄 예측에서 인공 지능의 잠재력, 현재 응용 프로그램, 직면한 과제 및 기술의 가능한 윤리적 영향을 탐구합니다. 인공 지능 및 범죄 예측: 기본 CrimeGPT는 기계 학습 알고리즘을 사용하여 대규모 데이터 세트를 분석하고 범죄가 발생할 가능성이 있는 장소와 시기를 예측할 수 있는 패턴을 식별합니다. 이러한 데이터 세트에는 과거 범죄 통계, 인구 통계 정보, 경제 지표, 날씨 패턴 등이 포함됩니다. 인간 분석가가 놓칠 수 있는 추세를 식별함으로써 인공 지능은 법 집행 기관에 권한을 부여할 수 있습니다.

탐지 알고리즘 개선: 고해상도 광학 원격탐사 이미지에서 표적 탐지용 탐지 알고리즘 개선: 고해상도 광학 원격탐사 이미지에서 표적 탐지용 Jun 06, 2024 pm 12:33 PM

01 전망 요약 현재로서는 탐지 효율성과 탐지 결과 간의 적절한 균형을 이루기가 어렵습니다. 우리는 광학 원격 탐사 이미지에서 표적 감지 네트워크의 효과를 향상시키기 위해 다층 특징 피라미드, 다중 감지 헤드 전략 및 하이브리드 주의 모듈을 사용하여 고해상도 광학 원격 감지 이미지에서 표적 감지를 위한 향상된 YOLOv5 알고리즘을 개발했습니다. SIMD 데이터 세트에 따르면 새로운 알고리즘의 mAP는 YOLOv5보다 2.2%, YOLOX보다 8.48% 우수하여 탐지 결과와 속도 간의 균형이 더 잘 이루어졌습니다. 02 배경 및 동기 원격탐사 기술의 급속한 발전으로 항공기, 자동차, 건물 등 지구 표면의 많은 물체를 묘사하기 위해 고해상도 광학 원격탐사 영상이 활용되고 있다. 원격탐사 이미지 해석에서 물체 감지

이미지 유사성 비교를 위해 대비 손실을 사용하는 Siamese 네트워크 탐색 이미지 유사성 비교를 위해 대비 손실을 사용하는 Siamese 네트워크 탐색 Apr 02, 2024 am 11:37 AM

소개 컴퓨터 비전 분야에서 이미지 유사성을 정확하게 측정하는 것은 광범위한 실제 응용 분야에서 중요한 작업입니다. 이미지 검색 엔진부터 얼굴 인식 시스템, 콘텐츠 기반 추천 시스템까지 유사한 이미지를 효과적으로 비교하고 찾는 능력이 중요합니다. 대조 손실과 결합된 Siamese 네트워크는 데이터 기반 방식으로 이미지 유사성을 학습하기 위한 강력한 프레임워크를 제공합니다. 이 블로그 게시물에서는 Siamese 네트워크에 대해 자세히 알아보고 대비 손실의 개념을 살펴보고 이 두 구성 요소가 어떻게 함께 작동하여 효과적인 이미지 유사성 모델을 생성하는지 살펴보겠습니다. 첫째, Siamese 네트워크는 동일한 가중치와 매개변수를 공유하는 두 개의 동일한 하위 네트워크로 구성됩니다. 각 하위 네트워크는 입력 이미지를 특징 벡터로 인코딩합니다.

See all articles