新版本cocos2d-x工程项目的创建(本版本为cocos2d-x
据说cocos2d-x从2.1.2以后就可以使用python创建项目工程,我是从2.1.3开始学习的,之前没有注意到这一点,一直都是用那些比较复杂的办法创建工程,感觉也有点蛋疼,最近下载了2.1.5来使用,发现里面没有了vs模版,没有create-project.bat等创建win32和androi
据说cocos2d-x从2.1.2以后就可以使用python创建项目工程,我是从2.1.3开始学习的,之前没有注意到这一点,一直都是用那些比较复杂的办法创建工程,感觉也有点蛋疼,最近下载了2.1.5来使用,发现里面没有了vs模版,没有create-project.bat等创建win32和android的项目文件,于是上网查询,才知道2.1.5以后彻底采用pyhton来创建项目工程了,我按照网上办法使用了一下觉得很是方便和简单,早知道这事的话就不用浪费这么多时间在工程配置上了!下面开始创建工程:
1、需要下载python2.7.3安装(http://pan.baidu.com/share/link?shareid=1463897023&uk=4061830256),安装目录如下
2、配置python环境变量在path中加入python安装路径我的是D:\python2.7.3
3、自己写一个create-project.bat放于cocos根目录
@echo off cd tools\project-creator set /p projectName=projectName: if "%projectName%"=="" goto lblExit set /p packageName=packageName: if "%packageName%"=="" goto lblExit2 create_project.py -project %projectName% -package %packageName% -language cpp pause exit :lblExit @echo 项目名称不能为空! :lblExit2 @echo 包名称不能为空! pause
注意:如果出现错误请在这儿下载http://pan.baidu.com/s/1mTsf5一个已经做好的,不需要任何修改。
4、这样就可以直接使用create-project.bat创建工程
如下图,依次输入工程名、包名(注意一定要是org.test.hello这种类型),回车就能创建项目
5、打开D:\Cocos2dx\cocos2d-x_v2.1.5b\projects可以看到我们刚才创建的工程
打开Test可以看到里面已经自动创建了包括android、ios、win32、mac等主流平台的工程
6、运行win32下的工程Test.sln(前提得装好vs)文件即可打开win32工程
等文件与库自动加载完毕之后可以在解决方案中看到已经自动加载了所需要的常用库(如下图),这样直接运行程序就ok了,过程与以前相比真是十分的简单
7、在android下使用也是特别的简单,只需要将安装好adt的eclipse打开(前提是电脑得安装好cygwin和ndk),导入Test文件下的pro.android运行即可

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











역시 Tusheng 영상이지만 PaintsUndo는 다른 경로를 택했습니다. ControlNet 작성자 LvminZhang이 다시 살기 시작했습니다! 이번에는 회화 분야를 목표로 삼고 있습니다. 새로운 프로젝트인 PaintsUndo는 출시된 지 얼마 되지 않아 1.4kstar(여전히 상승세)를 받았습니다. 프로젝트 주소: https://github.com/lllyasviel/Paints-UNDO 이 프로젝트를 통해 사용자는 정적 이미지를 입력하고 PaintsUndo는 자동으로 라인 초안부터 완성품 따라가기까지 전체 페인팅 과정의 비디오를 생성하도록 도와줍니다. . 그리는 과정에서 선의 변화가 놀랍습니다. 최종 영상 결과는 원본 이미지와 매우 유사합니다. 완성된 그림을 살펴보겠습니다.

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 이 논문의 저자는 모두 일리노이 대학교 Urbana-Champaign(UIUC)의 Zhang Lingming 교사 팀 출신입니다. Steven Code Repair, 박사 4년차, 연구원

AI 모델이 내놓은 답변이 전혀 이해하기 어렵다면 감히 사용해 보시겠습니까? 기계 학습 시스템이 더 중요한 영역에서 사용됨에 따라 우리가 그 결과를 신뢰할 수 있는 이유와 신뢰할 수 없는 경우를 보여주는 것이 점점 더 중요해지고 있습니다. 복잡한 시스템의 출력에 대한 신뢰를 얻는 한 가지 가능한 방법은 시스템이 인간이나 다른 신뢰할 수 있는 시스템이 읽을 수 있는 출력 해석을 생성하도록 요구하는 것입니다. 즉, 가능한 오류가 발생할 수 있는 지점까지 완전히 이해할 수 있습니다. 설립하다. 예를 들어, 사법 시스템에 대한 신뢰를 구축하기 위해 우리는 법원이 자신의 결정을 설명하고 뒷받침하는 명확하고 읽기 쉬운 서면 의견을 제공하도록 요구합니다. 대규모 언어 모델의 경우 유사한 접근 방식을 채택할 수도 있습니다. 그러나 이 접근 방식을 사용할 때는 언어 모델이 다음을 생성하는지 확인하세요.

건배! 종이 토론이 말로만 진행된다면 어떤가요? 최근 스탠포드 대학교 학생들은 arXiv 논문에 대한 질문과 의견을 직접 게시할 수 있는 arXiv 논문에 대한 공개 토론 포럼인 alphaXiv를 만들었습니다. 웹사이트 링크: https://alphaxiv.org/ 실제로 이 웹사이트를 특별히 방문할 필요는 없습니다. URL에서 arXiv를 alphaXiv로 변경하면 alphaXiv 포럼에서 해당 논문을 바로 열 수 있습니다. 논문, 문장: 오른쪽 토론 영역에서 사용자는 저자에게 논문의 아이디어와 세부 사항에 대해 질문하는 질문을 게시할 수 있습니다. 예를 들어 다음과 같이 논문 내용에 대해 의견을 제시할 수도 있습니다.

LLM에 인과관계 사슬을 보여주면 공리를 학습합니다. AI는 이미 수학자 및 과학자의 연구 수행을 돕고 있습니다. 예를 들어, 유명한 수학자 Terence Tao는 GPT와 같은 AI 도구의 도움을 받아 자신의 연구 및 탐색 경험을 반복적으로 공유했습니다. AI가 이러한 분야에서 경쟁하려면 강력하고 신뢰할 수 있는 인과관계 추론 능력이 필수적입니다. 본 논문에서 소개할 연구에서는 작은 그래프의 인과 전이성 공리 시연을 위해 훈련된 Transformer 모델이 큰 그래프의 전이 공리로 일반화될 수 있음을 발견했습니다. 즉, Transformer가 단순한 인과 추론을 수행하는 방법을 학습하면 보다 복잡한 인과 추론에 사용될 수 있습니다. 팀이 제안하는 공리적 훈련 프레임워크는 시연만으로 패시브 데이터를 기반으로 인과 추론을 학습하는 새로운 패러다임입니다.

최근 새천년 7대 과제 중 하나로 알려진 리만 가설이 새로운 돌파구를 마련했다. 리만 가설은 소수 분포의 정확한 특성과 관련된 수학에서 매우 중요한 미해결 문제입니다(소수는 1과 자기 자신으로만 나눌 수 있는 숫자이며 정수 이론에서 근본적인 역할을 합니다). 오늘날의 수학 문헌에는 리만 가설(또는 일반화된 형식)의 확립에 기초한 수학적 명제가 천 개가 넘습니다. 즉, 리만 가설과 그 일반화된 형식이 입증되면 천 개가 넘는 명제가 정리로 확립되어 수학 분야에 지대한 영향을 미칠 것이며, 리만 가설이 틀린 것으로 입증된다면, 이러한 제안의 일부도 그 효과를 잃을 것입니다. MIT 수학 교수 Larry Guth와 Oxford University의 새로운 돌파구

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 서문 최근 몇 년 동안 다양한 분야에서 MLLM(Multimodal Large Language Model)의 적용이 눈에 띄는 성공을 거두었습니다. 그러나 많은 다운스트림 작업의 기본 모델로서 현재 MLLM은 잘 알려진 Transformer 네트워크로 구성됩니다.

시계열 예측에 언어 모델을 실제로 사용할 수 있나요? Betteridge의 헤드라인 법칙(물음표로 끝나는 모든 뉴스 헤드라인은 "아니오"로 대답할 수 있음)에 따르면 대답은 아니오여야 합니다. 사실은 사실인 것 같습니다. 이렇게 강력한 LLM은 시계열 데이터를 잘 처리할 수 없습니다. 시계열, 즉 시계열은 이름에서 알 수 있듯이 시간 순서대로 배열된 데이터 포인트 시퀀스 집합을 나타냅니다. 시계열 분석은 질병 확산 예측, 소매 분석, 의료, 금융 등 다양한 분야에서 중요합니다. 시계열 분석 분야에서는 최근 많은 연구자들이 LLM(Large Language Model)을 사용하여 시계열의 이상 현상을 분류, 예측 및 탐지하는 방법을 연구하고 있습니다. 이 논문에서는 텍스트의 순차적 종속성을 잘 처리하는 언어 모델이 시계열로도 일반화될 수 있다고 가정합니다.
