데이터 베이스 MySQL 튜토리얼 Linq技术四:动态Linq技术--Linq.Expressions

Linq技术四:动态Linq技术--Linq.Expressions

Jun 07, 2016 pm 03:56 PM
linq 동적 기술

前面介绍了Linq的三个方面应用:Linq to SQL, Linq to XML和Linq to Object,这篇介绍一下动态Linq的实现方式及应用场景。 命名空间: System.Linq; System.Linq.Expressions; 应用Linq的时候,我们都知道只需要Lambda表达式就行,但有些场景仅仅只使用Data

前面介绍了Linq的三个方面应用:Linq to SQL, Linq to XML和Linq to Object,这篇介绍一下动态Linq的实现方式及应用场景。

命名空间:

System.Linq;

System.Linq.Expressions;

应用Linq的时候,我们都知道只需要Lambda表达式就行,但有些场景仅仅只使用Data Model的字段名操作是不够的或者不方便的。

场景1:假设我们需要拼接Where条件进行查询,一种方式可以拼接IQueryable的表达式。但我想像写SQL语句那样直接拼接一个Where条件就行,Linq要怎么实现?

场景2:假设我们想要一个列表,这个列表可以按每个表头来排序,我们把表头当作参数传给排序函数,在函数内部该怎么实现呢?可以逐一枚举对比,针对不同的列写不同的Linq语句,但代码很冗余。用传统方式根据动态字段名怎么实现?

下面来说说Linq的另一种应用方式: 动态Linq,使用Linq.Expressions. 场景1, 我只想用Where拼接(表名参数)就完成操作,下面看看实现。下面所有的Demo只是应用于Linq to SQL, 如果是Entity Framework会有差异.

DataClasses1DataContext dbContext = new DataClasses1DataContext();

public string dynamicLinq(int id = 50)
{
IQueryable dLinq = dbContext.DataListForDemos;

ParameterExpression paraExpr = Expression.Parameter(typeof(DataListForDemo), "data");
MemberExpression propExpr = Expression.Property(paraExpr, typeof(DataListForDemo).GetProperty("ID"));
BinaryExpression filter = Expression.LessThan(propExpr, Expression.Constant(id));
LambdaExpression lambdaWhere = Expression.Lambda(filter, paraExpr);

MethodCallExpression Where = Expression.Call(typeof(Queryable),
"Where",
new Type[] { typeof(DataListForDemo) },
Expression.Constant(dLinq),
lambdaWhere
);

var data0 = dLinq.AsQueryable().Provider.CreateQuery(Where);


DbCommand comm = dbContext.GetCommand(data0);
dbContext.Log(comm.CommandText);

return comm.CommandText;
}

上面是各种Linq.Expression的类, 用ParameterExpression定义参数也就是要操作的实体对象, 用PropertyExpression定义属性也就是要操作的字段, 用BinaryExpression定义条件查询的表达式也就是Where条件, 用LambdaExpression定义Lambda表达式也就是IQueryable对象, 最后一步就是来完成调用. Call方法是来定义你的表达式方法, 如: Where, Select, OrderBy, GroupBy, All, Any, Equal等等方法, 有哪一种动态需求就写哪一种方法, 这个在MSDN上面没有太多实例, 不过网上可以查到很多.

上面返回的是生成的SQL语句, SQL语句是这样的:

SELECT [t0].[ID], [t0].[col1], [t0].[col2], [t0].[col3], [t0].[col5], [t0].[col4]
FROM [dbo].[DataListForDemo] AS [t0]
WHERE [t0].[ID]

对照生成的SQL语句和Expression的表达式就很容易理解Linq是怎么实现的和怎么工作的. 那么有些人会问, IQueayable和IEnuerable的对象都会带有Linq的表达式而并不是单独的方法通过传参数实现, 要实现这种方式那么就得提一下什么是扩展方法以及扩展方法怎么实现. 在C#里面要扩展某个对象的方法可以override基类方法, 但是像string, iqueryable等这种对象怎么扩展它们的方法呢? Override基类当然不行, 这时就要用this关键字,也是this的另一种应用方式.

使用扩展方法, 首先写一个静态类, 在静态类里面定义一个静态方法, 静态方法里面第一个参数以this开始, 第一个参数也就是你要扩展的系统对象.

如:

public static class DynamicQueryable

{

//扩展IQueryable对象的方法

public static IQueryable Where(this IQueryable source, string predicate, params object[] values)
{
if (source == null) throw new ArgumentNullException("source");
if (predicate == null) throw new ArgumentNullException("predicate");
LambdaExpression lambda = DynamicExpression.ParseLambda(source.ElementType, typeof(bool), predicate, values);
return source.Provider.CreateQuery(
Expression.Call(
typeof(Queryable), "Where",
new Type[] { source.ElementType },
source.Expression, Expression.Quote(lambda)));
}

public static LambdaExpression ParseLambda(Type itType, Type resultType, string expression, params object[] values)
{
return ParseLambda(new ParameterExpression[] { Expression.Parameter(itType, "") }, resultType, expression, values);
}

}

上面就是扩展IQueryabler方法, 所以IQueryable类型的所有对象都有了动态Where的功能, 我不知道为什么Microsoft团队没有把这个功能加上, 而只是提供了Expressions类, 加上这些动态表达之后Linq功能会非常强壮.

来看看调用:

public string SelectDynamic(int id = 0)
{
DataListForDemo model = dbContext.DataListForDemos.Where("ID = " + id.ToString()).SingleOrDefault();
return model.ID.ToString();
}

现在很明显的一个变化是Where里面可以只写一个拼接的where条件了, 而且是一个字符串, 这就是大多数程序员想到的东东吧!

Linq里面所有已经存在的方法都可以通过这种方式扩展和实现动态化, 更多的实现方式可以Google, 建议使用Google, 英文文章有的写得非常透彻,而且资源丰富.

 
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

VirtualBox 고정 디스크를 동적 디스크로 또는 그 반대로 변환 VirtualBox 고정 디스크를 동적 디스크로 또는 그 반대로 변환 Mar 25, 2024 am 09:36 AM

가상 머신을 생성할 때 디스크 유형을 선택하라는 메시지가 표시되며 고정 디스크 또는 동적 디스크를 선택할 수 있습니다. 고정 디스크를 선택했지만 나중에 동적 디스크가 필요하다는 사실을 깨닫게 된다면 어떻게 될까요? 아니면 그 반대의 경우도 가능합니다. 이번 포스팅에서는 VirtualBox 고정 디스크를 동적 디스크로 또는 그 반대로 변환하는 방법을 살펴보겠습니다. 동적 디스크는 처음에는 크기가 작다가 가상 머신에 데이터를 저장함에 따라 크기가 커지는 가상 하드 디스크입니다. 동적 디스크는 필요한 만큼만 호스트 저장 공간을 차지하므로 저장 공간을 절약하는 데 매우 효율적입니다. 그러나 디스크 용량이 늘어나면 컴퓨터 성능이 약간 영향을 받을 수 있습니다. 고정 디스크와 동적 디스크는 일반적으로 가상 머신에서 사용됩니다.

자율주행과 궤도예측에 관한 글은 이 글이면 충분합니다! 자율주행과 궤도예측에 관한 글은 이 글이면 충분합니다! Feb 28, 2024 pm 07:20 PM

자율주행 궤적 예측은 차량의 주행 과정에서 발생하는 다양한 데이터를 분석하여 차량의 향후 주행 궤적을 예측하는 것을 의미합니다. 자율주행의 핵심 모듈인 궤도 예측의 품질은 후속 계획 제어에 매우 중요합니다. 궤적 예측 작업은 풍부한 기술 스택을 보유하고 있으며 자율 주행 동적/정적 인식, 고정밀 지도, 차선, 신경망 아키텍처(CNN&GNN&Transformer) 기술 등에 대한 익숙함이 필요합니다. 시작하기가 매우 어렵습니다! 많은 팬들은 가능한 한 빨리 궤도 예측을 시작하여 함정을 피하기를 희망합니다. 오늘은 궤도 예측을 위한 몇 가지 일반적인 문제와 입문 학습 방법을 살펴보겠습니다. 관련 지식 입문 1. 미리보기 논문이 순서대로 되어 있나요? A: 먼저 설문조사를 보세요, p

Stable Diffusion 3 논문이 드디어 공개되고, 아키텍처의 세부 사항이 공개되어 Sora를 재현하는 데 도움이 될까요? Stable Diffusion 3 논문이 드디어 공개되고, 아키텍처의 세부 사항이 공개되어 Sora를 재현하는 데 도움이 될까요? Mar 06, 2024 pm 05:34 PM

StableDiffusion3의 논문이 드디어 나왔습니다! 이 모델은 2주 전에 출시되었으며 Sora와 동일한 DiT(DiffusionTransformer) 아키텍처를 사용합니다. 출시되자마자 큰 화제를 불러일으켰습니다. 이전 버전과 비교하여 StableDiffusion3에서 생성된 이미지의 품질이 크게 향상되었습니다. 이제 다중 테마 프롬프트를 지원하고 텍스트 쓰기 효과도 향상되었으며 더 이상 잘못된 문자가 표시되지 않습니다. StabilityAI는 StableDiffusion3이 800M에서 8B 범위의 매개변수 크기를 가진 일련의 모델임을 지적했습니다. 이 매개변수 범위는 모델이 많은 휴대용 장치에서 직접 실행될 수 있어 AI 사용이 크게 줄어든다는 것을 의미합니다.

DualBEV: BEVFormer 및 BEVDet4D를 크게 능가하는 책을 펼치세요! DualBEV: BEVFormer 및 BEVDet4D를 크게 능가하는 책을 펼치세요! Mar 21, 2024 pm 05:21 PM

본 논문에서는 자율 주행에서 다양한 시야각(예: 원근 및 조감도)에서 객체를 정확하게 감지하는 문제, 특히 원근(PV) 공간에서 조감(BEV) 공간으로 기능을 효과적으로 변환하는 방법을 탐구합니다. VT(Visual Transformation) 모듈을 통해 구현됩니다. 기존 방법은 크게 2D에서 3D로, 3D에서 2D로 변환하는 두 가지 전략으로 나뉩니다. 2D에서 3D로의 방법은 깊이 확률을 예측하여 조밀한 2D 특징을 개선하지만, 특히 먼 영역에서는 깊이 예측의 본질적인 불확실성으로 인해 부정확성이 발생할 수 있습니다. 3D에서 2D로의 방법은 일반적으로 3D 쿼리를 사용하여 2D 기능을 샘플링하고 Transformer를 통해 3D와 2D 기능 간의 대응에 대한 주의 가중치를 학습하므로 계산 및 배포 시간이 늘어납니다.

'마인크래프트'가 AI 마을로 변신, NPC 주민들이 실제 사람처럼 역할극 '마인크래프트'가 AI 마을로 변신, NPC 주민들이 실제 사람처럼 역할극 Jan 02, 2024 pm 06:25 PM

이 네모난 남자는 눈앞에 있는 '불청객'의 정체를 고민하며 미간을 찌푸리고 있다는 점에 주목해주세요. 알고 보니 그녀는 위험한 상황에 처해 있었고, 이를 깨닫자마자 문제를 해결하기 위한 전략을 찾기 위해 재빨리 정신적 탐색을 시작했습니다. 결국 그녀는 현장을 떠나 가능한 한 빨리 도움을 구하고 즉각적인 조치를 취하기로 결정했습니다. 동시에 반대편에 있는 사람도 그녀와 같은 생각을 하고 있었는데... <마인크래프트>에도 모든 캐릭터가 인공지능에 의해 조종되는 장면이 있었다. 예를 들어 앞서 언급한 소녀는 17세지만 똑똑하고 용감한 택배기사입니다. 그들은 마인크래프트를 배경으로 한 이 작은 마을에서 인간처럼 기억하고 생각하며 살아갈 수 있는 능력을 가지고 있습니다. 그들을 움직이는 것은 아주 새로운 것입니다.

단순한 3D 가우스 그 이상입니다! 최첨단 3D 재구성 기술의 최신 개요 단순한 3D 가우스 그 이상입니다! 최첨단 3D 재구성 기술의 최신 개요 Jun 02, 2024 pm 06:57 PM

위에 작성됨 & 저자의 개인적인 이해는 이미지 기반 3D 재구성은 입력 이미지 세트에서 객체나 장면의 3D 모양을 추론하는 어려운 작업이라는 것입니다. 학습 기반 방법은 3차원 형상을 직접 추정할 수 있는 능력으로 주목을 받았습니다. 이 리뷰 논문은 새로운, 보이지 않는 뷰 생성을 포함한 최첨단 3D 재구성 기술에 중점을 두고 있습니다. 입력 유형, 모델 구조, 출력 표현 및 훈련 전략을 포함하여 가우스 스플래시 방법의 최근 개발에 대한 개요가 제공됩니다. 해결되지 않은 과제와 앞으로의 방향에 대해서도 논의한다. 해당 분야의 급속한 발전과 3D 재구성 방법을 향상할 수 있는 수많은 기회를 고려할 때 알고리즘을 철저히 조사하는 것이 중요해 보입니다. 따라서 이 연구는 가우스 산란의 최근 발전에 대한 포괄적인 개요를 제공합니다. (엄지손가락을 위로 스와이프하세요.

Python 기반 기술 공개: 해시 알고리즘 구현 방법 Python 기반 기술 공개: 해시 알고리즘 구현 방법 Nov 08, 2023 pm 06:40 PM

Python의 기반 기술 공개: 해시 알고리즘을 구현하는 방법, 구체적인 코드 예제가 필요합니다. 요약: 해시 알고리즘은 컴퓨터 분야에서 일반적으로 사용되는 기술 중 하나이며 데이터의 고유 식별을 빠르게 판별하는 데 사용됩니다. 고급 언어인 Python은 hash() 함수 및 다양한 해시 알고리즘 구현과 같은 많은 내장 해시 함수를 제공합니다. 이 기사에서는 해싱 알고리즘의 원리와 Python의 기본 구현 세부 사항을 공개하고 구체적인 코드 예제를 제공합니다. 해시 알고리즘 소개 해시 알고리즘이라고도 알려진 해시 알고리즘은 임의 길이의 데이터를 임의의 길이의 데이터로 변환하는 방법입니다.

혁신적인 GPT-4o: 인간-컴퓨터 상호 작용 경험 재편 혁신적인 GPT-4o: 인간-컴퓨터 상호 작용 경험 재편 Jun 07, 2024 pm 09:02 PM

OpenAI가 출시한 GPT-4o 모델은 특히 여러 입력 미디어(텍스트, 오디오, 이미지)를 처리하고 해당 출력을 생성하는 기능에서 의심할 여지 없이 큰 혁신입니다. 이 기능은 인간과 컴퓨터의 상호 작용을 더욱 자연스럽고 직관적으로 만들어 AI의 실용성과 유용성을 크게 향상시킵니다. GPT-4o의 주요 특징으로는 높은 확장성, 멀티미디어 입력 및 출력, 자연어 이해 기능의 추가 개선 등이 있습니다. 1. 교차 미디어 입력/출력: GPT-4o+는 텍스트, 오디오 및 이미지의 모든 조합을 입력으로 받아들이고 이러한 미디어에서 직접 출력을 생성할 수 있습니다. 이는 단일 입력 유형만 처리하는 기존 AI 모델의 한계를 깨뜨려 인간과 컴퓨터의 상호 작용을 더욱 유연하고 다양하게 만듭니다. 이 혁신은 스마트 어시스턴트를 강화하는 데 도움이 됩니다.

See all articles