MongoDB入门学习(四):MongoDB的索引
上一篇讲到了MongoDB的基本操作增删查改,对于查询来说,必须按照我们的查询要求去集合中,并将查找到的结果返回,在这个过程中其实是对整个集合中每个文档进行了扫描,如果满足我们的要求就添加到结果集中最后返回。对于小集合来说,这个过程没什么,但是集
上一篇讲到了MongoDB的基本操作增删查改,对于查询来说,必须按照我们的查询要求去集合中,并将查找到的结果返回,在这个过程中其实是对整个集合中每个文档进行了扫描,如果满足我们的要求就添加到结果集中最后返回。对于小集合来说,这个过程没什么,但是集合中数据很大的时候,进行表扫描是一个非常恐怖的事情,于是有了索引一说,索引是用来加速查询的,相当于书籍的目录,有了目录可以很精准的定位要查找内容的位置,从而减少无谓的查找。
1.索引的类型
创建索引可以是在单个字段上,也可以是在多个字段上,这个根据自己的实际情况来选择,创建索引时字段的顺序也是有讲究的。创建索引是通过ensureIndex()方法,需要给该方法传递一个文档形式的数据,其中指定索引的字段和顺序,1代表升序,-1代表降序。
1).默认索引
还记得"_id"吗,这个字段的数据是不能重复的,它就是MongoDB的默认索引,而且不能被删除。
2).单列索引
在单个字段上创建的索引就是单列索引,在查询的过程中可以对该加速对该键的查询,然而对其他键的查询是没有帮助的。单列索引的顺序是不会影响对该键的随即查询,创建单列索引:
> db.people.ensureIndex({"name" : 1})
3).组合索引
还可以在多个键上创建组合索引,此时键的位置和索引的顺序都会影响查询的效率,看下面创建组合索引:
> db.people.ensureIndex({"name" : 1, "age" : 1}) > db.people.ensureIndex({"age" : 1, "name" : 1})
第一种情况会对name排序组织,当name一样时在对age排序,所以对{"name" : 1}和{“name” : 1, "age" : 1}的查询更高效,而第二种情况则对age排序,当age一样再对name排序,所以对{"age" : 1}和{"age" : 1, "name" : 1}的查询更高效。当组合索引包含很多字段的时候,会对前几个键的查询有帮助。
4).内嵌文档索引
还可以对内嵌文档创建索引,和普通键创建索引一样差不多,也可以对内嵌文档创建组合索引:
> db.people.ensureIndex({"friends.name" : 1}) > db.people.ensureIndex({"friends.name" : 1, "friends.age" : 1})
在来看看其他几种形式的索引:
唯一索引 > db.people.ensureIndex({"name" : 1}, {"unique" : true}) > db.people.ensureIndex({"name" : 1}, {"unique" : true, "dropDups" : true}) 松散索引 > db.people.ensureIndex({"name" : 1}, {"sparse" : true}) 多值索引 > db.people.find() {"name" : ["mary", "rose"]} > db.people.ensureIndex({"name" : 1})
唯一索引unique可以保证该键对应的值在集合中是唯一的,如果创建唯一索引的时候,该字段原来就存在了重复的数据,那么就会创建失败,可以加上dropDups字段来消除重复数据,它会保留发现的第一个文档,其他有重复数据的文档都将被删除。
集合中有的文档不存在某些字段,或者某些字段的值为null,那么我们在该字段上创建索引的时候不希望让这些空值的文档参与,那么就定义为松散索引sparse,比如在name上创建索引时,发现有的人在数据库中只有学号,没有名字,那么我们不希望把它们也包含进来,此时就定义为松散索引。
一个键对应的值是一个数组,在该键上创建索引时是一个多值索引,会为数组中每个值生成一个索引元素,相当于分裂成了几个独立的索引项,但是它们还是对应同一个文档数据。
2.索引的管理
索引固然是为查询而生,而且可以为每个键都创建索引,但是索引是需要存储空间的,所以索引不是越多越好,而且创建索引后,每次的插入,更新和删除文档都会产生额外的开销,因为数据库中不但要执行这些操作,而且还要在集合索引中标记这些操作。所以要根据实际情况来创建索引,索引没用之后将其删除。
创建索引是ensureIndex()方法,创建完成后可以通过getIndexes()来查看集合中创建的索引情况:
> db.people.ensureIndex({"name" : 1, "age" : 1}) > db.people.getIndexes() [ { "v" : 1, "key" : { "_id" : 1 }, "ns" : "test.people", "name" : "_id_" }, { "v" : 1, "key" : { "name" : 1, "age" : 1 }, "ns" : "test.people", "name" : "name_1_age_1" } ]
可以看到people集合创建了两个索引,一个是"_id",这个是默认索引,另外一个是name和age的组合索引,名字为keyname1_dir_keyname2_dir_...,keyname代表索引的键,dir代表方向,1代表升序,-1代表降序。当然我们也可以自定义索引的名称:
> db.people.ensureIndex({"name" : 1, "age" : 1}, {"name" : "myIndex"}) > db.people.getIndexes() [ { "v" : 1, "key" : { "_id" : 1 }, "ns" : "test.people", "name" : "_id_" }, { "v" : 1, "key" : { "name" : 1, "age" : 1 }, "ns" : "test.people", "name" : "myIndex" } ]
删除索引是通过dropIndex():
方式一: > db.people.dropIndex({"name" : 1, "age" : 1}) { "nIndexesWas" : 2, "ok" : 1 } 方式二: > db.runCommand({"dropIndexes" : "people", "index" : "myIndex"}) { "nIndexesWas" : 2, "ok" : 1 }
索引的元信息存储在每个数据库的system.indexes集合中,不能对其进行插入和删除文档的操作,只能通过ensureIndex和dropIndex进行。
> db.system.indexes.find() { "v" : 1, "key" : { "_id" : 1 }, "ns" : "test.people", "name" : "_id_" } { "v" : 1, "key" : { "name" : 1, "age" : 1 }, "ns" : "test.people", "name" : "myIndex" }
清空集合中所有的文档是不会将索引删除的,原来创建的索引依然存在,但是直接删除集合的话,该集合的索引也是会被删除的。
3.索引的效率
如果我们定义了很多的索引,那么MongoDB会根据我们的查询选项重新排序,并智能的选择一个最优的来使用,比如我们创建了{"name" : 1, "age" : 1}和{"age" : 1, "class" : 1}两个索引,但是我们的查询项为find({"age" : 10, "name" : "mary"}),那么MongoDB会自动重新排序为find({"name" : "mary", "age" : 10}),并且利用索引{"name" : 1, "age" : 1}来查询。
MongoDB提供了explain工具来帮助我们获得查询方面的很多有用信息,只要对游标调用这个方法就可以得到查询的细节。下面给math集合中添加10W个文档,再来看看使用索引前后的效率对比:
> var arr = []; > for(var i = 0; i < 100000; i++){ ... var doc = {}; ... var value = Math.floor(Math.random() * 1000); ... doc["number"] = value; ... arr.push(doc); ... } 100000 > db.math.insert(arr) > db.math.count() 100000 > db.math.find().limit(10) { "_id" : ObjectId("53a7f7c6e4fd24348ce61fe5"), "number" : 462 } { "_id" : ObjectId("53a7f7c6e4fd24348ce61fe6"), "number" : 123 } { "_id" : ObjectId("53a7f7c6e4fd24348ce61fe7"), "number" : 90 } { "_id" : ObjectId("53a7f7c6e4fd24348ce61fe8"), "number" : 46 } { "_id" : ObjectId("53a7f7c6e4fd24348ce61fe9"), "number" : 244 } { "_id" : ObjectId("53a7f7c6e4fd24348ce61fea"), "number" : 972 } { "_id" : ObjectId("53a7f7c6e4fd24348ce61feb"), "number" : 925 } { "_id" : ObjectId("53a7f7c6e4fd24348ce61fec"), "number" : 110 } { "_id" : ObjectId("53a7f7c6e4fd24348ce61fed"), "number" : 739 } { "_id" : ObjectId("53a7f7c6e4fd24348ce61fee"), "number" : 945 }
通过for循环给arr数组中添加10W条数据,然后再批量插入这些数据到math集合中,查看前10条数据,因为是随即生成的值,所以number字段的值会有重复值,我们就来查询462这个值:
创建索引前: > db.math.find({"number" : 462}).explain() { "cursor" : "BasicCursor", "isMultiKey" : false, "n" : 94, "nscannedObjects" : 100000, "nscanned" : 100000, "nscannedObjectsAllPlans" : 100000, "nscannedAllPlans" : 100000, "scanAndOrder" : false, "indexOnly" : false, "nYields" : 0, "nChunkSkips" : 0, "millis" : 35, "indexBounds" : { }, "server" : "server0.169:9352" } 创建索引后: > db.math.ensureIndex({"number" : 1}) > db.math.find({"number" : 462}).explain() { "cursor" : "BtreeCursor number_1", "isMultiKey" : false, "n" : 94, "nscannedObjects" : 94, "nscanned" : 94, "nscannedObjectsAllPlans" : 94, "nscannedAllPlans" : 94, "scanAndOrder" : false, "indexOnly" : false, "nYields" : 0, "nChunkSkips" : 0, "millis" : 0, "indexBounds" : { "number" : [ [ 462, 462 ] ] }, "server" : "server0.169:9352" }
这里来看一下有用的信息,"cursor"指用的哪个索引,"nscanned"代表查找了多少个文档,"n"指返回文档的数量,"millis"表示查询所花时间,单位是毫秒。可以看出创建索引前没有使用索引,在全部的文档中查询的,花费了35毫秒,而创建索引后,使用了number_1索引查询,索引存储在B树结构中,只在94个文档中查询,几乎不花时间。
如果有很多索引的话,MongoDB会自动选一个来查询,你也可以通过hint来强制使用某个索引,这里强制使用{"age" : 1, "name" : 1}这个索引:
> db.people.find({"age" : {"$gt" : 10}, "name" : "mary"}).hint({"age" : 1, "name" : 1})

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











키미: 단 한 문장이면 단 10초만에 PPT가 완성됩니다. PPT가 너무 짜증나네요! 회의를 하려면 PPT가 있어야 하고, 주간 보고서를 작성하려면 PPT가 있어야 하며, 누군가를 부정행위를 했다고 비난하려면 PPT를 보내야 합니다. 대학은 PPT 전공을 공부하는 것과 비슷합니다. 수업 시간에 PPT를 보고 수업 후에 PPT를 하는 거죠. 아마도 데니스 오스틴이 37년 전 PPT를 발명했을 때, 언젠가 PPT가 이렇게 널리 보급될 것이라고는 예상하지 못했을 것입니다. 우리가 PPT를 만들면서 힘들었던 경험을 이야기하면 눈물이 납니다. "20페이지가 넘는 PPT를 만드는 데 3개월이 걸렸고, 수십 번 수정했어요. PPT를 보면 토할 것 같았어요. 한창 때는 하루에 다섯 장씩 했는데, 숨소리까지 냈어요." PPT였어요." 즉석 회의가 있으면 해야죠.

Machine Power Report 편집자: Yang Wen 대형 모델과 AIGC로 대표되는 인공지능의 물결은 우리가 살고 일하는 방식을 조용히 변화시키고 있지만 대부분의 사람들은 여전히 그것을 어떻게 사용하는지 모릅니다. 이에 직관적이고 흥미롭고 간결한 인공지능 활용 사례를 통해 AI 활용 방법을 자세히 소개하고 모두의 사고를 자극하고자 'AI in Use' 칼럼을 론칭하게 됐다. 또한 독자들이 혁신적인 실제 사용 사례를 제출하는 것을 환영합니다. 영상 링크 : https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ 최근 샤오홍슈에서는 혼자 사는 소녀의 인생 브이로그가 인기를 끌었습니다. 몇 가지 치유의 말과 함께 일러스트레이션 스타일의 애니메이션을 단 며칠 만에 쉽게 익힐 수 있습니다.

소라가 나오지 않자 OpenAI의 반대자들은 무기를 사용해 거리를 파괴했습니다. 소라를 사용할 수 있게 공개하지 않으면 정말 도난당할 것입니다! 오늘 샌프란시스코 스타트업 LumaAI는 트럼프 카드를 사용하여 차세대 AI 비디오 생성 모델 DreamMachine을 출시했습니다. 무료이며 누구나 사용할 수 있습니다. 보도에 따르면 이 모델은 간단한 텍스트 설명을 기반으로 소라에 버금가는 효과로 고품질의 사실적인 동영상을 생성할 수 있다고 합니다. 소식이 알려지자마자 수많은 사용자들이 이를 시험해 보기 위해 공식 홈페이지로 몰려들었습니다. 관계자들은 이 모델이 단 2분 만에 120프레임의 영상을 생성할 수 있다고 주장하고 있지만, 방문 급증으로 인해 공식 홈페이지에서 많은 이용자들이 몇 시간씩 기다려 오고 있다. Luma의 제품 성장 책임자인 BarkleyDai는 Discord에 대해 언급해야 했습니다.

7월 24일, Kuaishou 비디오 세대 대형 모델 Keling AI는 기본 모델이 다시 업그레이드되었으며 내부 테스트를 위해 완전히 공개되었다고 발표했습니다. Kuaishou는 더 많은 사용자가 Keling AI를 사용할 수 있도록 하고 창작자의 다양한 사용 요구 사항을 더 잘 충족시키기 위해 앞으로는 완전히 공개된 내부 테스트를 기반으로 다양한 카테고리에 대한 멤버십 시스템도 공식적으로 출시할 것이라고 밝혔습니다. 회원에게 해당하는 독점적인 기능 서비스를 제공합니다. 동시에 Keling AI의 기본 모델도 다시 업그레이드되어 사용자 경험을 더욱 향상시켰습니다. 사용자 경험을 더욱 향상시키기 위해 기본 모델 효과가 업그레이드되었습니다. Keling AI는 출시된 지 한 달이 넘었고 이번 멤버십 시스템 출시로 여러 번 업그레이드되고 반복되었습니다. 다시 변신을 거쳤습니다. 첫 번째는 업그레이드된 기본 모델을 통해 화질이 대폭 향상됐다는 점이다.

매트릭스는 이해하기 어렵지만, 다른 관점에서 보면 다를 수도 있다. 수학을 배울 때, 우리는 배우는 지식의 난이도와 추상성으로 인해 좌절감을 느끼는 경우가 많습니다. 그러나 때로는 관점을 바꾸는 것만으로도 문제에 대한 간단하고 직관적인 해결책을 찾을 수 있습니다. 예를 들어, 우리가 어렸을 때 제곱합 (a+b)² 공식을 배울 때 그것이 왜 a²+2ab+b²와 같은지 이해하지 못했을 수도 있습니다. 책과 선생님은 우리에게 이것을 이렇게 기억하라고 하셨습니다. 어느 날 우리는 이 애니메이션 그림을 보았습니다. 갑자기 우리가 기하학적 관점에서 이해할 수 있다는 생각이 떠올랐습니다! 이제 이러한 깨달음이 다시 일어납니다. 음수가 아닌 행렬은 상응하는 유향 그래프로 동등하게 변환될 수 있습니다! 아래 그림에서 볼 수 있듯이 왼쪽의 3×3 행렬은 실제로

베이징 시간 7월 31일 오후 2시, AR 안경 XREAL 시리즈의 최신 멤버인 XREAL Air2 Ultra가 중국에서 공식 출시되었습니다. 현재 JD.com, Tmall, Douyin 및 기타 플랫폼에서 사용할 수 있습니다. 초기 가격은 3,999위안. 이 AR 글래스는 주로 개발자 커뮤니티를 대상으로 하는 주력 제품으로, 개발자의 공간 컴퓨팅 진입 문턱을 낮추고, 공간 컴퓨팅 분야의 혁신을 촉진하며, 더욱 번영하는 AR 생태계를 구축하는 것을 목표로 합니다. 6가지 핵심 기능으로 개발자 역량 강화 XREAL의 두 번째 6DoF(6자유도, 6자유도) 모든 기능을 갖춘 안경인 XREAL Air2 Ultra는 현재 업계에서 유일하게 듀얼 환경 감지 센서(SLAM 카메라)를 사용하는 안경입니다.

이 기사는 데비안 시스템에서 MongoDB를 구성하여 자동 확장을 달성하는 방법을 소개합니다. 주요 단계에는 MongoDB 복제 세트 및 디스크 공간 모니터링 설정이 포함됩니다. 1. MongoDB 설치 먼저 MongoDB가 데비안 시스템에 설치되어 있는지 확인하십시오. 다음 명령을 사용하여 설치하십시오. sudoaptupdatesudoaptinstall-imongb-org 2. MongoDB Replica 세트 MongoDB Replica 세트 구성은 자동 용량 확장을 달성하기위한 기초 인 고 가용성 및 데이터 중복성을 보장합니다. MongoDB 서비스 시작 : sudosystemctlstartMongodsudosys

이 기사는 데비안 시스템에서 고도로 사용 가능한 MongoDB 데이터베이스를 구축하는 방법에 대해 설명합니다. 우리는 데이터 보안 및 서비스가 계속 운영되도록하는 여러 가지 방법을 모색 할 것입니다. 주요 전략 : ReplicaSet : ReplicaSet : 복제품을 사용하여 데이터 중복성 및 자동 장애 조치를 달성합니다. 마스터 노드가 실패하면 복제 세트는 서비스의 지속적인 가용성을 보장하기 위해 새 마스터 노드를 자동으로 선택합니다. 데이터 백업 및 복구 : MongoDump 명령을 정기적으로 사용하여 데이터베이스를 백업하고 데이터 손실의 위험을 처리하기 위해 효과적인 복구 전략을 공식화합니다. 모니터링 및 경보 : 모니터링 도구 (예 : Prometheus, Grafana) 배포 MongoDB의 실행 상태를 실시간으로 모니터링하고
