数据库连接技术之OLEDB
之前的博客介绍了ODBC和JDBC,这次简单的介绍一下OLE DB。ODBC的总结不知道是没贴到博客上还是不在这个博客上,我再找找,没有的话我再补充到时候。好了,开始吧。 回顾 之前呢介绍过了ODBC和JDBC基本的结构是一样的,也就是本质一致。都是是访问数据库的一套
之前的博客介绍了ODBC和JDBC,这次简单的介绍一下OLE DB。ODBC的总结不知道是没贴到博客上还是不在这个博客上,我再找找,没有的话我再补充到时候。好了,开始吧。回顾
之前呢介绍过了ODBC和JDBC基本的结构是一样的,也就是本质一致。都是是访问数据库的一套统一的接口,是一系列的规范和对数据库访问的API。区别只是在于ODBC是由C++语言实现的而JDBC是有Java实现的,之所以出现JDBC是因为Java程序和C++的ODBC之间的通信不便。可以说ODBC和JDBC二者之间的关系是横向的,而OLE DB相对与ODBC的关系则是纵向的。为什么这么说呢?OLE DB之历史
为什么说OLE DB((Object Linking and Embedding, Database)和ODBC之间的关系是纵向的呢。这还是要从ODBC说起,ODBC是一套接口,但是ODBC只支持访问关系型数据库,既二维数据数据库。但是随着技术的发展显然我们需要面对的不在只是关系型的数据库,还需要访问不能使用SQL访问的非关系行和层次结构行数据,包括邮件系统中的数据、Web上的文本、目录服务等形式。因此,从数据源的角度来说OLE DB 和ODBC的关系如下图:
基于COM标准
ODBC是基于API的实现,而OLE DB则是基于COM标准。也就是说在实现上ODBC必须支持几乎所有的DBMS特征和功能,而OLE DB则可以部分实现。这里不太理解可以查查什么事COM标准。OLE DB构成
OLE DB包括几个逻辑组件,因为其基于COM标准,所以组件之间相互独立,仅保持通信。
数据提供者(Data Provider):凡是通过OLE DB将数据提供出来的,即数据库提供者。数据提供者的概念可以和ODBC中的驱动程序对比理解。
数据消费者(Data Consumer):使用了OLE DB提供的数据的程序或组件。
服务组件(Service Component):执行数据提供者和数据消费者之间的数据传递工作。
业务组件(Bussiness Component):利用服务组件专门完成某种特定业务信息处理,是可以重用的功能组件。
OLE DB和ADO
之前的博客绝对是介绍过ADO了,这里ADO是OLE DB的进一步封装,在程序中的关系如下:
总的来说:OLE DB是ODBC的扩充,它基于COM标准,具有比ODBC更高的灵活性。不过最终也还是链接数据库的一套标准。只不过相对与ODBC来说更底层。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Hibernate 다형성 매핑은 상속된 클래스를 데이터베이스에 매핑할 수 있으며 다음 매핑 유형을 제공합니다. Join-subclass: 상위 클래스의 모든 열을 포함하여 하위 클래스에 대한 별도의 테이블을 생성합니다. 클래스별 테이블: 하위 클래스별 열만 포함하는 하위 클래스에 대한 별도의 테이블을 만듭니다. Union-subclass: Joined-subclass와 유사하지만 상위 클래스 테이블이 모든 하위 클래스 열을 통합합니다.

Apple의 최신 iOS18, iPadOS18 및 macOS Sequoia 시스템 릴리스에는 사진 애플리케이션에 중요한 기능이 추가되었습니다. 이 기능은 사용자가 다양한 이유로 손실되거나 손상된 사진과 비디오를 쉽게 복구할 수 있도록 설계되었습니다. 새로운 기능에는 사진 앱의 도구 섹션에 '복구됨'이라는 앨범이 도입되었습니다. 이 앨범은 사용자가 기기에 사진 라이브러리에 포함되지 않은 사진이나 비디오를 가지고 있을 때 자동으로 나타납니다. "복구된" 앨범의 출현은 데이터베이스 손상으로 인해 손실된 사진과 비디오, 사진 라이브러리에 올바르게 저장되지 않은 카메라 응용 프로그램 또는 사진 라이브러리를 관리하는 타사 응용 프로그램에 대한 솔루션을 제공합니다. 사용자는 몇 가지 간단한 단계만 거치면 됩니다.

9월 23일, 국립방위기술대학교, JD.com 및 베이징 공과대학이 "DeepModelFusion:ASurvey"라는 논문을 발표했습니다. 딥 모델 융합/병합은 여러 딥 러닝 모델의 매개변수나 예측을 단일 모델로 결합하는 새로운 기술입니다. 이는 더 나은 성능을 위해 개별 모델의 편향과 오류를 보상하기 위해 다양한 모델의 기능을 결합합니다. 대규모 딥 러닝 모델(예: LLM 및 기본 모델)에 대한 딥 모델 융합은 높은 계산 비용, 고차원 매개변수 공간, 서로 다른 이종 모델 간의 간섭 등을 포함한 몇 가지 문제에 직면합니다. 이 기사에서는 기존 심층 모델 융합 방법을 네 가지 범주로 나눕니다. (1) 더 나은 초기 모델 융합을 얻기 위해 손실 감소 경로를 통해 가중치 공간의 솔루션을 연결하는 "패턴 연결"

MySQLi를 사용하여 PHP에서 데이터베이스 연결을 설정하는 방법: MySQLi 확장 포함(require_once) 연결 함수 생성(functionconnect_to_db) 연결 함수 호출($conn=connect_to_db()) 쿼리 실행($result=$conn->query()) 닫기 연결( $conn->close())

HTML은 데이터베이스를 직접 읽을 수 없지만 JavaScript 및 AJAX를 통해 읽을 수 있습니다. 단계에는 데이터베이스 연결 설정, 쿼리 보내기, 응답 처리 및 페이지 업데이트가 포함됩니다. 이 기사에서는 JavaScript, AJAX 및 PHP를 사용하여 MySQL 데이터베이스에서 데이터를 읽는 실제 예제를 제공하고 쿼리 결과를 HTML 페이지에 동적으로 표시하는 방법을 보여줍니다. 이 예제에서는 XMLHttpRequest를 사용하여 데이터베이스 연결을 설정하고 쿼리를 보내고 응답을 처리함으로써 페이지 요소에 데이터를 채우고 데이터베이스를 읽는 HTML 기능을 실현합니다.

위에 작성됨 & 저자의 개인적인 이해는 이미지 기반 3D 재구성은 입력 이미지 세트에서 객체나 장면의 3D 모양을 추론하는 어려운 작업이라는 것입니다. 학습 기반 방법은 3차원 형상을 직접 추정할 수 있는 능력으로 주목을 받았습니다. 이 리뷰 논문은 새로운, 보이지 않는 뷰 생성을 포함한 최첨단 3D 재구성 기술에 중점을 두고 있습니다. 입력 유형, 모델 구조, 출력 표현 및 훈련 전략을 포함하여 가우스 스플래시 방법의 최근 개발에 대한 개요가 제공됩니다. 해결되지 않은 과제와 앞으로의 방향에 대해서도 논의한다. 해당 분야의 급속한 발전과 3D 재구성 방법을 향상할 수 있는 수많은 기회를 고려할 때 알고리즘을 철저히 조사하는 것이 중요해 보입니다. 따라서 이 연구는 가우스 산란의 최근 발전에 대한 포괄적인 개요를 제공합니다. (엄지손가락을 위로 스와이프하세요.

PHP에서 데이터베이스 연결 오류를 처리하려면 다음 단계를 사용할 수 있습니다. mysqli_connect_errno()를 사용하여 오류 코드를 얻습니다. 오류 메시지를 얻으려면 mysqli_connect_error()를 사용하십시오. 이러한 오류 메시지를 캡처하고 기록하면 데이터베이스 연결 문제를 쉽게 식별하고 해결할 수 있어 애플리케이션이 원활하게 실행될 수 있습니다.

OpenAI가 출시한 GPT-4o 모델은 특히 여러 입력 미디어(텍스트, 오디오, 이미지)를 처리하고 해당 출력을 생성하는 기능에서 의심할 여지 없이 큰 혁신입니다. 이 기능은 인간과 컴퓨터의 상호 작용을 더욱 자연스럽고 직관적으로 만들어 AI의 실용성과 유용성을 크게 향상시킵니다. GPT-4o의 주요 특징으로는 높은 확장성, 멀티미디어 입력 및 출력, 자연어 이해 기능의 추가 개선 등이 있습니다. 1. 교차 미디어 입력/출력: GPT-4o+는 텍스트, 오디오 및 이미지의 모든 조합을 입력으로 받아들이고 이러한 미디어에서 직접 출력을 생성할 수 있습니다. 이는 단일 입력 유형만 처리하는 기존 AI 모델의 한계를 깨뜨려 인간과 컴퓨터의 상호 작용을 더욱 유연하고 다양하게 만듭니다. 이 혁신은 스마트 어시스턴트를 강화하는 데 도움이 됩니다.
