PostgreSQL 9.4版本的物化视图更新
PostgreSQL的9.4版本出来有一段时间了,也更新了很多内容,其中之一是比较感兴趣的物化视图的更新,对比原先的物化视图语法,新增
PostgreSQL的9.4版本出来有一段时间了,也更新了很多内容,其中之一是比较感兴趣的物化视图的更新,对比原先的物化视图语法,新增了一个CONCURRENTLY参数。
一、新语法:
二、数据准备:
[postgres@ ~]$ psql psql (9.4.1) Type "help" for help. postgres=# create table tbl_kenyon(id int,remark text); CREATE TABLE postgres=# insert into tbl_kenyon select generate_series(1,1000000),md5(random()::text); INSERT 0 1000000 postgres=# select * from tbl_kenyon limit 10; id | remark ----+---------------------------------- 1 | d4fc1c7440a4d1672028586c2bb76514 2 | 5c1590519fa47f02db2895146a5f62a4 3 | 1710ac4199746e9bfa188f1655d1f857 4 | 6cae64191c2bc309a4884301e77b26ad 5 | 813987a5c3af2d75bd0de6e288083b10 6 | c52baa42cda22c89719bfb59dde1f78b 7 | 491003337ea4e887c5ac24d174c691c6 8 | 455cdf32b170fcf2b450c0b974fbf310 9 | 43adb30aeb0a21ab35fdf97064ad1d21 10 | 97dc1adc5484244a077e87ef36ecfe09 (10 rows) --创建简单的物化视图 postgres=# create materialized view mv_tbl_kenyon as select * from tbl_kenyon ; SELECT 1000000 postgres=# \d+ List of relations Schema | Name | Type | Owner | Size | Description --------+---------------+-------------------+----------+-------+------------- public | mv_tbl_kenyon | materialized view | postgres | 65 MB | public | tbl_kenyon | table | postgres | 65 MB | (2 rows)三、测试用例:
--测试不带concurrently postgres=# insert into tbl_kenyon values(1000001,md5(random()::text)); INSERT 0 1 postgres=# select max(id) from mv_tbl_kenyon ; max --------- 1000000 (1 row) postgres=# \timing Timing is on. postgres=# refresh materialized view mv_tbl_kenyon ; REFRESH MATERIALIZED VIEW Time: 2056.460 ms --测试带concurrently,需要建一个唯一索引 postgres=# insert into tbl_kenyon values(1000002,md5(random()::text)); INSERT 0 1 Time: 9.434 ms postgres=# refresh materialized view concurrently mv_tbl_kenyon; ERROR: cannot refresh materialized view "public.mv_tbl_kenyon" concurrently HINT: Create a unique index with no WHERE clause on one or more columns of the materialized view. Time: 22109.877 ms postgres=# create unique index idx_ken on mv_tbl_kenyon(id); CREATE INDEX Time: 707.721 ms postgres=# select max(id) from mv_tbl_kenyon ; max --------- 1000001 (1 row) Time: 1.110 ms postgres=# begin; BEGIN postgres=# refresh materialized view concurrently mv_tbl_kenyon; REFRESH MATERIALIZED VIEW Time: 24674.739 ms --如果在refresh的时候,前面加个begin; --还能发现在开启的另外的session里面,是不会阻塞查询的,反之不加concurrently会阻塞 postgres=# select * from mv_tbl_kenyon limit 10; id | remark ----+---------------------------------- 1 | d4fc1c7440a4d1672028586c2bb76514 2 | 5c1590519fa47f02db2895146a5f62a4 3 | 1710ac4199746e9bfa188f1655d1f857 4 | 6cae64191c2bc309a4884301e77b26ad 5 | 813987a5c3af2d75bd0de6e288083b10 6 | c52baa42cda22c89719bfb59dde1f78b 7 | 491003337ea4e887c5ac24d174c691c6 8 | 455cdf32b170fcf2b450c0b974fbf310 9 | 43adb30aeb0a21ab35fdf97064ad1d21 10 | 97dc1adc5484244a077e87ef36ecfe09 (10 rows)四、源码
相关唯一索引的源码,在matview.c里面可以查看:
五、总结:
1.新版的物化视图新增了concurrently参数,可以使在刷新视图时不会锁住该物化视图的查询工作
2.该参数的原理和优缺点与索引的concurrently类似,以时间来换取查询锁,,刷新的速度会变得很慢
3.增量刷新的参数还没有,比较遗憾
------------------------------------华丽丽的分割线------------------------------------
CentOS 6.3环境下yum安装PostgreSQL 9.3
PostgreSQL缓存详述
Windows平台编译 PostgreSQL
Ubuntu下LAPP(Linux+Apache+PostgreSQL+PHP)环境的配置与安装
Ubuntu上的phppgAdmin安装及配置
CentOS平台下安装PostgreSQL9.3
PostgreSQL配置Streaming Replication集群
如何在CentOS 7/6.5/6.4 下安装PostgreSQL 9.3 与 phpPgAdmin
------------------------------------华丽丽的分割线------------------------------------
PostgreSQL 的详细介绍:请点这里
PostgreSQL 的下载地址:请点这里
本文永久更新链接地址:

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











전체 테이블 스캔은 MySQL에서 인덱스를 사용하는 것보다 빠를 수 있습니다. 특정 사례는 다음과 같습니다. 1) 데이터 볼륨은 작습니다. 2) 쿼리가 많은 양의 데이터를 반환 할 때; 3) 인덱스 열이 매우 선택적이지 않은 경우; 4) 복잡한 쿼리시. 쿼리 계획을 분석하고 인덱스 최적화, 과도한 인덱스를 피하고 정기적으로 테이블을 유지 관리하면 실제 응용 프로그램에서 최상의 선택을 할 수 있습니다.

InnoDB의 전체 텍스트 검색 기능은 매우 강력하여 데이터베이스 쿼리 효율성과 대량의 텍스트 데이터를 처리 할 수있는 능력을 크게 향상시킬 수 있습니다. 1) InnoDB는 기본 및 고급 검색 쿼리를 지원하는 역 색인화를 통해 전체 텍스트 검색을 구현합니다. 2) 매치 및 키워드를 사용하여 검색, 부울 모드 및 문구 검색을 지원합니다. 3) 최적화 방법에는 워드 세분화 기술 사용, 인덱스의 주기적 재건 및 캐시 크기 조정, 성능과 정확도를 향상시키는 것이 포함됩니다.

예, MySQL은 Windows 7에 설치 될 수 있으며 Microsoft는 Windows 7 지원을 중단했지만 MySQL은 여전히 호환됩니다. 그러나 설치 프로세스 중에 다음 지점이 표시되어야합니다. Windows 용 MySQL 설치 프로그램을 다운로드하십시오. MySQL의 적절한 버전 (커뮤니티 또는 기업)을 선택하십시오. 설치 프로세스 중에 적절한 설치 디렉토리 및 문자를 선택하십시오. 루트 사용자 비밀번호를 설정하고 올바르게 유지하십시오. 테스트를 위해 데이터베이스에 연결하십시오. Windows 7의 호환성 및 보안 문제에 주목하고 지원되는 운영 체제로 업그레이드하는 것이 좋습니다.

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) 데이터베이스 및 테이블 작성 : CreateAbase 및 CreateTable 명령을 사용하십시오. 2) 기본 작업 : 삽입, 업데이트, 삭제 및 선택. 3) 고급 운영 : 가입, 하위 쿼리 및 거래 처리. 4) 디버깅 기술 : 확인, 데이터 유형 및 권한을 확인하십시오. 5) 최적화 제안 : 인덱스 사용, 선택을 피하고 거래를 사용하십시오.

클러스터 인덱스와 비 클러스터 인덱스의 차이점은 1. 클러스터 된 인덱스는 인덱스 구조에 데이터 행을 저장하며, 이는 기본 키 및 범위별로 쿼리에 적합합니다. 2. 클러스터되지 않은 인덱스는 인덱스 키 값과 포인터를 데이터 행으로 저장하며 비 예산 키 열 쿼리에 적합합니다.

MySQL 및 MariaDB는 공존 할 수 있지만주의해서 구성해야합니다. 열쇠는 각 데이터베이스에 다른 포트 번호와 데이터 디렉토리를 할당하고 메모리 할당 및 캐시 크기와 같은 매개 변수를 조정하는 것입니다. 연결 풀링, 애플리케이션 구성 및 버전 차이도 고려해야하며 함정을 피하기 위해 신중하게 테스트하고 계획해야합니다. 두 개의 데이터베이스를 동시에 실행하면 리소스가 제한되는 상황에서 성능 문제가 발생할 수 있습니다.

MySQL 데이터베이스에서 사용자와 데이터베이스 간의 관계는 권한과 테이블로 정의됩니다. 사용자는 데이터베이스에 액세스 할 수있는 사용자 이름과 비밀번호가 있습니다. 권한은 보조금 명령을 통해 부여되며 테이블은 Create Table 명령에 의해 생성됩니다. 사용자와 데이터베이스 간의 관계를 설정하려면 데이터베이스를 작성하고 사용자를 생성 한 다음 권한을 부여해야합니다.

MySQL은 B-Tree, Hash, Full-Text 및 Spatial의 4 가지 인덱스 유형을 지원합니다. 1.B- 트리 색인은 동일한 값 검색, 범위 쿼리 및 정렬에 적합합니다. 2. 해시 인덱스는 동일한 값 검색에 적합하지만 범위 쿼리 및 정렬을 지원하지 않습니다. 3. 전체 텍스트 색인은 전체 텍스트 검색에 사용되며 다량의 텍스트 데이터를 처리하는 데 적합합니다. 4. 공간 지수는 지리 공간 데이터 쿼리에 사용되며 GIS 응용 프로그램에 적합합니다.
