목차
Hive 安装
Hive是什么
metastore
建表语句支持的类型
建完的表存在哪里呢?
Hive 各种类型表使用
内部表
分区表
桶表
外部表
查询语法
显示条数
데이터 베이스 MySQL 튜토리얼 Alex的Hadoop菜鸟教程:第10课Hive入门教程

Alex的Hadoop菜鸟教程:第10课Hive入门教程

Jun 07, 2016 pm 04:12 PM
hadoop hive 지도 시간 신병

Hive 安装 相比起很多教程先介绍概念,我喜欢先动手装上,然后用例子来介绍概念。我们先来安装一下Hive 先确认是否已经安装了对应的yum源,如果没有照这个教程里面写的安装cdh的yum源http://blog.csdn.net/nsrainbow/article/details/36629339 Hive是什么 Hi


Hive 安装

相比起很多教程先介绍概念,我喜欢先动手装上,然后用例子来介绍概念。我们先来安装一下Hive

先确认是否已经安装了对应的yum源,如果没有照这个教程里面写的安装cdh的yum源http://blog.csdn.net/nsrainbow/article/details/36629339


Hive是什么

Hive 提供了一个让大家可以使用sql去查询数据的途径。但是最好不要拿Hive进行实时的查询。因为Hive的实现原理是把sql语句转化为多个Map Reduce任务所以Hive非常慢,官方文档说Hive 适用于高延时性的场景而且很费资源。

举个简单的例子,可以像这样去查询

hive> select * from h_employee;
OK
1	1	peter
2	2	paul
Time taken: 9.289 seconds, Fetched: 2 row(s)
로그인 후 복사

这个h_employee不一定是一个数据库表

metastore

Hive 中建立的表都叫metastore表。这些表并不真实的存储数据,而是定义真实数据跟hive之间的映射,就像传统数据库中表的meta信息,所以叫做metastore。实际存储的时候可以定义的存储模式有四种:

内部表(默认)分区表桶表外部表 举个例子,这是一个简历内部表的语句
CREATE TABLE worker(id INT, name STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054';
로그인 후 복사

这个语句的意思是建立一个worker的内部表,内部表是默认的类型,所以不用写存储的模式。并且使用逗号作为分隔符存储

建表语句支持的类型

基本数据类型
tinyint / smalint / int /bigint
float / double
boolean
string

复杂数据类型
Array/Map/Struct

没有date /datetime

建完的表存在哪里呢?

在 /user/hive/warehouse 里面,可以通过hdfs来查看建完的表位置
$ hdfs dfs -ls /user/hive/warehouse
Found 11 items
drwxrwxrwt   - root     supergroup          0 2014-12-02 14:42 /user/hive/warehouse/h_employee
drwxrwxrwt   - root     supergroup          0 2014-12-02 14:42 /user/hive/warehouse/h_employee2
drwxrwxrwt   - wlsuser  supergroup          0 2014-12-04 17:21 /user/hive/warehouse/h_employee_export
drwxrwxrwt   - root     supergroup          0 2014-08-18 09:20 /user/hive/warehouse/h_http_access_logs
drwxrwxrwt   - root     supergroup          0 2014-06-30 10:15 /user/hive/warehouse/hbase_apache_access_log
drwxrwxrwt   - username supergroup          0 2014-06-27 17:48 /user/hive/warehouse/hbase_table_1
drwxrwxrwt   - username supergroup          0 2014-06-30 09:21 /user/hive/warehouse/hbase_table_2
drwxrwxrwt   - username supergroup          0 2014-06-30 09:43 /user/hive/warehouse/hive_apache_accesslog
drwxrwxrwt   - root     supergroup          0 2014-12-02 15:12 /user/hive/warehouse/hive_employee
로그인 후 복사

一个文件夹对应一个metastore表

Hive 各种类型表使用

内部表

CREATE TABLE workers( id INT, name STRING)  
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054';
로그인 후 복사

通过这样的语句就建立了一个内部表叫 workers,并且分隔符是逗号, \054 是ASCII 码
我们可以通过 show tables; 来看看有多少表,其实hive的很多语句是模仿mysql的,当你们不知道语句的时候,把mysql的语句拿来基本可以用。除了limit比较怪,这个后面会说
hive> show tables;
OK
h_employee
h_employee2
h_employee_export
h_http_access_logs
hive_employee
workers
Time taken: 0.371 seconds, Fetched: 6 row(s)
로그인 후 복사


建立完后,我们试着插入几条数据。这边要告诉大家Hive不支持单句插入的语句,必须批量,所以不要指望能用insert into workers values (1,'jack') 这样的语句插入数据。hive支持的插入数据的方式有两种: 从文件读取数据从别的表读出数据插入(insert from select) 这里我采用从文件读数据进来。先建立一个叫 worker.csv的文件
$ cat workers.csv
1,jack
2,terry
3,michael
로그인 후 복사

用LOAD DATA 导入到Hive的表中
hive> LOAD DATA LOCAL INPATH '/home/alex/workers.csv' INTO TABLE workers;
Copying data from file:/home/alex/workers.csv
Copying file: file:/home/alex/workers.csv
Loading data to table default.workers
Table default.workers stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 25, raw_data_size: 0]
OK
Time taken: 0.655 seconds
로그인 후 복사

注意 不要少了那个 LOCAL , LOAD DATA LOCAL INPATH 跟 LOAD DATA INPATH 的区别是一个是从你本地磁盘上找源文件,一个是从hdfs上找文件如果加上OVERWRITE可以再导入之前先清空表,比如 LOAD DATA LOCAL INPATH '/home/alex/workers.csv' OVERWRITE INTO TABLE workers; 查询一下数据
hive> select * from workers;
OK
1	jack
2	terry
3	michael
Time taken: 0.177 seconds, Fetched: 3 row(s)
로그인 후 복사

我们去看下导入后在hive内部表是怎么存的
# hdfs dfs -ls /user/hive/warehouse/workers/
Found 1 items
-rwxrwxrwt   2 root supergroup         25 2014-12-08 15:23 /user/hive/warehouse/workers/workers.csv
로그인 후 복사

原来就是原封不动的把文件拷贝进去啊!就是这么土! 我们可以试验再放一个文件 workers2.txt (我故意把扩展名换一个,其实hive是不看扩展名的)
# cat workers2.txt 
4,peter
5,kate
6,ted
로그인 후 복사

导入
hive> LOAD DATA LOCAL INPATH '/home/alex/workers2.txt' INTO TABLE workers;
Copying data from file:/home/alex/workers2.txt
Copying file: file:/home/alex/workers2.txt
Loading data to table default.workers
Table default.workers stats: [num_partitions: 0, num_files: 2, num_rows: 0, total_size: 46, raw_data_size: 0]
OK
Time taken: 0.79 seconds
로그인 후 복사

去看下文件的存储结构
# hdfs dfs -ls /user/hive/warehouse/workers/
Found 2 items
-rwxrwxrwt   2 root supergroup         25 2014-12-08 15:23 /user/hive/warehouse/workers/workers.csv
-rwxrwxrwt   2 root supergroup         21 2014-12-08 15:29 /user/hive/warehouse/workers/workers2.txt
로그인 후 복사

多出来一个workers2.txt 再用sql查询下
hive> select * from workers;
OK
1	jack
2	terry
3	michael
4	peter
5	kate
6	ted
Time taken: 0.144 seconds, Fetched: 6 row(s)
로그인 후 복사

分区表

分区表是用来加速查询的,比如你的数据非常多,但是你的应用场景是基于这些数据做日报表,那你就可以根据日进行分区,当你要做2014-05-05的报表的时候只需要加载2014-05-05这一天的数据就行了。我们来创建一个分区表来看下
create table partition_employee(id int, name string) 
partitioned by(daytime string) 
row format delimited fields TERMINATED BY '\054';
로그인 후 복사

可以看到分区的属性,并不是任何一个列 我们先建立2个测试数据文件,分别对应两天的数据
# cat 2014-05-05
22,kitty
33,lily
# cat 2014-05-06
14,sami
45,micky
로그인 후 복사

导入到分区表里面
hive> LOAD DATA LOCAL INPATH '/home/alex/2014-05-05' INTO TABLE partition_employee partition(daytime='2014-05-05');
Copying data from file:/home/alex/2014-05-05
Copying file: file:/home/alex/2014-05-05
Loading data to table default.partition_employee partition (daytime=2014-05-05)
Partition default.partition_employee{daytime=2014-05-05} stats: [num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0]
Table default.partition_employee stats: [num_partitions: 1, num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0]
OK
Time taken: 1.154 seconds
hive> LOAD DATA LOCAL INPATH '/home/alex/2014-05-06' INTO TABLE partition_employee partition(daytime='2014-05-06');
Copying data from file:/home/alex/2014-05-06
Copying file: file:/home/alex/2014-05-06
Loading data to table default.partition_employee partition (daytime=2014-05-06)
Partition default.partition_employee{daytime=2014-05-06} stats: [num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0]
Table default.partition_employee stats: [num_partitions: 2, num_files: 2, num_rows: 0, total_size: 42, raw_data_size: 0]
OK
Time taken: 0.763 seconds
로그인 후 복사

导入的时候通过 partition 来指定分区。
查询的时候通过指定分区来查询
hive> select * from partition_employee where daytime='2014-05-05';
OK
22	kitty	2014-05-05
33	lily	2014-05-05
Time taken: 0.173 seconds, Fetched: 2 row(s)
로그인 후 복사

我的查询语句并没有什么特别的语法,hive 会自动判断你的where语句中是否包含分区的字段。而且可以使用大于小于等运算符
hive> select * from partition_employee where daytime>='2014-05-05';
OK
22	kitty	2014-05-05
33	lily	2014-05-05
14	sami	2014-05-06
45	mick'	2014-05-06
Time taken: 0.273 seconds, Fetched: 4 row(s)
로그인 후 복사

我们去看看存储的结构
# hdfs dfs -ls /user/hive/warehouse/partition_employee
Found 2 items
drwxrwxrwt   - root supergroup          0 2014-12-08 15:57 /user/hive/warehouse/partition_employee/daytime=2014-05-05
drwxrwxrwt   - root supergroup          0 2014-12-08 15:57 /user/hive/warehouse/partition_employee/daytime=2014-05-06
로그인 후 복사

我们试试二维的分区表
create table p_student(id int, name string) 
partitioned by(daytime string,country string) 
row format delimited fields TERMINATED BY '\054';
로그인 후 복사

查入一些数据
# cat 2014-09-09-CN 
1,tammy
2,eric
# cat 2014-09-10-CN 
3,paul
4,jolly
# cat 2014-09-10-EN 
44,ivan
66,billy
로그인 후 복사

导入hive
hive> LOAD DATA LOCAL INPATH '/home/alex/2014-09-09-CN' INTO TABLE p_student partition(daytime='2014-09-09',country='CN');
Copying data from file:/home/alex/2014-09-09-CN
Copying file: file:/home/alex/2014-09-09-CN
Loading data to table default.p_student partition (daytime=2014-09-09, country=CN)
Partition default.p_student{daytime=2014-09-09, country=CN} stats: [num_files: 1, num_rows: 0, total_size: 19, raw_data_size: 0]
Table default.p_student stats: [num_partitions: 1, num_files: 1, num_rows: 0, total_size: 19, raw_data_size: 0]
OK
Time taken: 0.736 seconds
hive> LOAD DATA LOCAL INPATH '/home/alex/2014-09-10-CN' INTO TABLE p_student partition(daytime='2014-09-10',country='CN');
Copying data from file:/home/alex/2014-09-10-CN
Copying file: file:/home/alex/2014-09-10-CN
Loading data to table default.p_student partition (daytime=2014-09-10, country=CN)
Partition default.p_student{daytime=2014-09-10, country=CN} stats: [num_files: 1, num_rows: 0, total_size: 19, raw_data_size: 0]
Table default.p_student stats: [num_partitions: 2, num_files: 2, num_rows: 0, total_size: 38, raw_data_size: 0]
OK
Time taken: 0.691 seconds
hive> LOAD DATA LOCAL INPATH '/home/alex/2014-09-10-EN' INTO TABLE p_student partition(daytime='2014-09-10',country='EN');
Copying data from file:/home/alex/2014-09-10-EN
Copying file: file:/home/alex/2014-09-10-EN
Loading data to table default.p_student partition (daytime=2014-09-10, country=EN)
Partition default.p_student{daytime=2014-09-10, country=EN} stats: [num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0]
Table default.p_student stats: [num_partitions: 3, num_files: 3, num_rows: 0, total_size: 59, raw_data_size: 0]
OK
Time taken: 0.622 seconds
로그인 후 복사

看看存储结构
# hdfs dfs -ls /user/hive/warehouse/p_student
Found 2 items
drwxr-xr-x   - root supergroup          0 2014-12-08 16:10 /user/hive/warehouse/p_student/daytime=2014-09-09
drwxr-xr-x   - root supergroup          0 2014-12-08 16:10 /user/hive/warehouse/p_student/daytime=2014-09-10
# hdfs dfs -ls /user/hive/warehouse/p_student/daytime=2014-09-09
Found 1 items
drwxr-xr-x   - root supergroup          0 2014-12-08 16:10 /user/hive/warehouse/p_student/daytime=2014-09-09/country=CN
로그인 후 복사

查询一下数据
hive> select * from p_student;
OK
1	tammy	2014-09-09	CN
2	eric	2014-09-09	CN
3	paul	2014-09-10	CN
4	jolly	2014-09-10	CN
44	ivan	2014-09-10	EN
66	billy	2014-09-10	EN
Time taken: 0.228 seconds, Fetched: 6 row(s)
로그인 후 복사
hive> select * from p_student where daytime='2014-09-10' and country='EN';
OK
44	ivan	2014-09-10	EN
66	billy	2014-09-10	EN
Time taken: 0.224 seconds, Fetched: 2 row(s)
로그인 후 복사

桶表

桶表是根据某个字段的hash值,来将数据扔到不同的“桶”里面。外国人有个习惯,就是分类东西的时候摆几个桶,上面贴不同的标签,所以他们取名的时候把这种表形象的取名为桶表。桶表表专门用于采样分析
下面这个例子是官网教程直接拷贝下来的,因为分区表跟桶表是可以同时使用的,所以这个例子中同时使用了分区跟桶两种特性
CREATE TABLE b_student(id INT, name STRING)
PARTITIONED BY(dt STRING, country STRING)
CLUSTERED BY(id) SORTED BY(name) INTO 4 BUCKETS
row format delimited 
    fields TERMINATED BY '\054';
로그인 후 복사


意思是根据userid来进行计算hash值,用viewTIme来排序存储 做数据跟导入的过程我就不在赘述了,这是导入后的数据
hive> select * from b_student;
OK
1	tammy	2014-09-09	CN
2	eric	2014-09-09	CN
3	paul	2014-09-10	CN
4	jolly	2014-09-10	CN
34	allen	2014-09-11	EN
Time taken: 0.727 seconds, Fetched: 5 row(s)
로그인 후 복사

从4个桶中采样抽取一个桶的数据
hive> select * from b_student tablesample(bucket 1 out of 4 on id);
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1406097234796_0041, Tracking URL = http://hadoop01:8088/proxy/application_1406097234796_0041/
Kill Command = /usr/lib/hadoop/bin/hadoop job  -kill job_1406097234796_0041
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2014-12-08 17:35:56,995 Stage-1 map = 0%,  reduce = 0%
2014-12-08 17:36:06,783 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.9 sec
2014-12-08 17:36:07,845 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.9 sec
MapReduce Total cumulative CPU time: 2 seconds 900 msec
Ended Job = job_1406097234796_0041
MapReduce Jobs Launched: 
Job 0: Map: 1   Cumulative CPU: 2.9 sec   HDFS Read: 482 HDFS Write: 22 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 900 msec
OK
4	jolly	2014-09-10	CN
로그인 후 복사

外部表

外部表就是存储不是由hive来存储的,比如可以依赖Hbase来存储,hive只是做一个映射而已。我用Hbase来举例
先建立一张Hbase表叫 employee
hbase(main):005:0> create 'employee','info'  
0 row(s) in 0.4740 seconds  
  
=> Hbase::Table - employee  
hbase(main):006:0> put 'employee',1,'info:id',1  
0 row(s) in 0.2080 seconds  
  
hbase(main):008:0> scan 'employee'  
ROW                                      COLUMN+CELL                                                                                                             
 1                                       column=info:id, timestamp=1417591291730, value=1                                                                        
1 row(s) in 0.0610 seconds  
  
hbase(main):009:0> put 'employee',1,'info:name','peter'  
0 row(s) in 0.0220 seconds  
  
hbase(main):010:0> scan 'employee'  
ROW                                      COLUMN+CELL                                                                                                             
 1                                       column=info:id, timestamp=1417591291730, value=1                                                                        
 1                                       column=info:name, timestamp=1417591321072, value=peter                                                                  
1 row(s) in 0.0450 seconds  
  
hbase(main):011:0> put 'employee',2,'info:id',2  
0 row(s) in 0.0370 seconds  
  
hbase(main):012:0> put 'employee',2,'info:name','paul'  
0 row(s) in 0.0180 seconds  
  
hbase(main):013:0> scan 'employee'  
ROW                                      COLUMN+CELL                                                                                                             
 1                                       column=info:id, timestamp=1417591291730, value=1                                                                        
 1                                       column=info:name, timestamp=1417591321072, value=peter                                                                  
 2                                       column=info:id, timestamp=1417591500179, value=2                                                                        
 2                                       column=info:name, timestamp=1417591512075, value=paul                                                                   
2 row(s) in 0.0440 seconds 
로그인 후 복사

建立外部表进行映射
hive> CREATE EXTERNAL TABLE h_employee(key int, id int, name string)   
    > STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
    > WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key, info:id,info:name")  
    > TBLPROPERTIES ("hbase.table.name" = "employee");  
OK  
Time taken: 0.324 seconds  
hive> select * from h_employee;  
OK  
1   1   peter  
2   2   paul  
Time taken: 1.129 seconds, Fetched: 2 row(s)
로그인 후 복사

查询语法

具体语法可以参考官方手册https://cwiki.apache.org/confluence/display/Hive/Tutorial 我只说几个比较奇怪的点

显示条数

展示x条数据,用的还是limit,比如
hive> select * from h_employee limit 1
    > ;
OK
1	1	peter
Time taken: 0.284 seconds, Fetched: 1 row(s)
로그인 후 복사
但是不支持起点,比如offset
下课!




본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Dewu 사용법 튜토리얼 Dewu 사용법 튜토리얼 Mar 21, 2024 pm 01:40 PM

Dewu APP는 현재 매우 인기 있는 브랜드 쇼핑 소프트웨어이지만 대부분의 사용자는 Dewu APP의 기능을 사용하는 방법을 모릅니다. 다음으로 편집기는 Dewuduo를 사용자에게 제공합니다. 관심 있는 사용자는 와서 살펴볼 수 있습니다! Dewu 이용방법 튜토리얼 [2024-03-20] Dewu 할부구매 이용방법 [2024-03-20] Dewu 쿠폰 받는 방법 [2024-03-20] Dewu 매뉴얼 고객센터 찾는 방법 [2024-03- 20] 듀우 픽업 코드 확인 방법 [2024-03-20] 듀우 구매처 찾기 [2024-03-20] 듀우 VIP 개설 방법 [2024-03-20] 듀우 반품, 교환 신청 방법

numpy 버전 업그레이드: 상세하고 따라하기 쉬운 가이드 numpy 버전 업그레이드: 상세하고 따라하기 쉬운 가이드 Feb 25, 2024 pm 11:39 PM

numpy 버전 업그레이드 방법: 따라하기 쉬운 튜토리얼, 구체적인 코드 예제 필요 소개: NumPy는 과학 컴퓨팅에 사용되는 중요한 Python 라이브러리입니다. 효율적인 수치 연산을 수행하는 데 사용할 수 있는 강력한 다차원 배열 객체와 일련의 관련 함수를 제공합니다. 새 버전이 출시되면 새로운 기능과 버그 수정이 지속적으로 제공됩니다. 이 문서에서는 설치된 NumPy 라이브러리를 업그레이드하여 최신 기능을 얻고 알려진 문제를 해결하는 방법을 설명합니다. 1단계: 처음에 현재 NumPy 버전을 확인하세요.

여름에는 꼭 무지개를 찍어보세요 여름에는 꼭 무지개를 찍어보세요 Jul 21, 2024 pm 05:16 PM

여름에 비가 내린 후에는 아름답고 마법 같은 특별한 날씨 장면인 무지개를 자주 볼 수 있습니다. 이 역시 사진에서 볼 수 있는 보기 드문 장면으로, 매우 포토제닉하다. 무지개가 나타나는 데에는 몇 가지 조건이 있습니다. 첫째, 공기 중에 충분한 물방울이 있고, 둘째, 태양이 낮은 각도로 빛납니다. 따라서 비가 그친 후 오후에 무지개를 보는 것이 가장 쉽습니다. 그러나 무지개의 형성은 날씨, 빛, 기타 조건의 영향을 크게 받기 때문에 일반적으로 짧은 시간 동안만 지속되며, 가장 잘 볼 수 있고 촬영할 수 있는 시간은 더욱 짧습니다. 그러면 무지개를 만났을 때 어떻게 제대로 기록하고 고품질로 사진을 찍을 수 있습니까? 1. 무지개를 찾아보세요. 위에서 언급한 조건 외에도 무지개는 대개 햇빛 방향으로 나타납니다. 즉, 태양이 서쪽에서 동쪽으로 빛날 경우 무지개가 동쪽에서 나타날 확률이 높습니다.

WeChat에서 결제 소리를 끄는 방법에 대한 튜토리얼 WeChat에서 결제 소리를 끄는 방법에 대한 튜토리얼 Mar 26, 2024 am 08:30 AM

1. 먼저 위챗을 엽니다. 2. 오른쪽 상단의 [+]를 클릭하세요. 3. QR코드를 클릭하시면 결제가 진행됩니다. 4. 오른쪽 상단에 있는 세 개의 작은 점을 클릭하세요. 5. 결제도착 음성알림을 클릭하시면 종료됩니다.

DisplayX(모니터 테스트 소프트웨어) 튜토리얼 DisplayX(모니터 테스트 소프트웨어) 튜토리얼 Mar 04, 2024 pm 04:00 PM

모니터 구입 시 테스트는 파손 구입을 피하기 위해 꼭 필요한 부분입니다. 오늘은 모니터 테스트를 위한 소프트웨어 사용법을 알려드리겠습니다. 방법 단계 1. 먼저 본 사이트에서 DisplayX 소프트웨어를 검색하여 다운로드한 후 설치하고 열면 사용자에게 제공되는 다양한 감지 방법을 확인할 수 있습니다. 2. 사용자는 일반 전체 테스트를 클릭합니다. 첫 번째 단계는 디스플레이의 밝기를 테스트하여 상자가 선명하게 보이도록 조정하는 것입니다. 3. 그런 다음 마우스를 클릭하여 다음 링크를 입력합니다. 모니터가 각 흑백 영역을 구분할 수 있으면 모니터가 여전히 양호하다는 의미입니다. 4. 마우스 왼쪽 버튼을 다시 클릭하면 모니터의 그레이스케일 테스트를 볼 수 있습니다. 색상 전환이 매끄러울수록 모니터가 더 좋아진 것입니다. 5. 또한, 우리는 displayx 소프트웨어에서

photoshopcs5는 어떤 소프트웨어인가요? -photoshopcs5 사용법 튜토리얼 photoshopcs5는 어떤 소프트웨어인가요? -photoshopcs5 사용법 튜토리얼 Mar 19, 2024 am 09:04 AM

PhotoshopCS는 Photoshop Creative Suite의 약자로 Adobe에서 제작한 소프트웨어입니다. 그래픽 디자인 및 이미지 처리에 널리 사용됩니다. PS를 처음 배우는 사용자로서 오늘은 photoshopcs5가 무엇인지, photoshopcs5를 사용하는 방법에 대해 설명하겠습니다. . 1. Photoshop CS5는 어떤 소프트웨어입니까? Adobe Photoshop CS5 Extended는 영화, 비디오 및 멀티미디어 분야의 전문가, 3D 및 애니메이션을 사용하는 그래픽 및 웹 디자이너, 엔지니어링 및 과학 분야의 전문가에게 이상적입니다. 3D 이미지를 렌더링하고 이를 2D 합성 이미지로 병합합니다. 쉽게 비디오 편집

전문가가 가르쳐드립니다! Huawei 휴대폰에서 긴 사진을 자르는 올바른 방법 전문가가 가르쳐드립니다! Huawei 휴대폰에서 긴 사진을 자르는 올바른 방법 Mar 22, 2024 pm 12:21 PM

스마트폰의 지속적인 발전과 함께 휴대폰의 기능은 점점 더 강력해졌고, 그 중 장사진 촬영 기능은 많은 사용자들이 일상생활에서 사용하는 중요한 기능 중 하나로 자리 잡았다. 긴 스크린샷은 사용자가 쉽게 보고 공유할 수 있도록 긴 웹페이지, 대화 기록, 사진을 한 번에 저장하는 데 도움이 됩니다. 많은 휴대폰 브랜드 중에서 Huawei 휴대폰은 사용자들로부터 높은 평가를 받는 브랜드 중 하나이며, 긴 사진을 자르는 기능도 높은 평가를 받고 있습니다. 이 기사에서는 Huawei 휴대폰으로 장사진을 찍는 올바른 방법과 Huawei 휴대폰을 더 잘 활용하는 데 도움이 되는 몇 가지 전문가 팁을 소개합니다.

PHP 튜토리얼: int 유형을 문자열로 변환하는 방법 PHP 튜토리얼: int 유형을 문자열로 변환하는 방법 Mar 27, 2024 pm 06:03 PM

PHP 튜토리얼: Int 유형을 문자열로 변환하는 방법 PHP에서는 정수 데이터를 문자열로 변환하는 것이 일반적인 작업입니다. 이 튜토리얼에서는 특정 코드 예제를 제공하면서 PHP의 내장 함수를 사용하여 int 유형을 문자열로 변환하는 방법을 소개합니다. 캐스트 사용: PHP에서는 캐스트를 사용하여 정수 데이터를 문자열로 변환할 수 있습니다. 이 방법은 매우 간단합니다. 정수 데이터 앞에 (문자열)을 추가하면 문자열로 변환됩니다. 아래는 간단한 샘플 코드입니다.

See all articles