Alex的Hadoop菜鸟教程:第10课Hive入门教程
Hive 安装 相比起很多教程先介绍概念,我喜欢先动手装上,然后用例子来介绍概念。我们先来安装一下Hive 先确认是否已经安装了对应的yum源,如果没有照这个教程里面写的安装cdh的yum源http://blog.csdn.net/nsrainbow/article/details/36629339 Hive是什么 Hi
Hive 安装
相比起很多教程先介绍概念,我喜欢先动手装上,然后用例子来介绍概念。我们先来安装一下Hive
先确认是否已经安装了对应的yum源,如果没有照这个教程里面写的安装cdh的yum源http://blog.csdn.net/nsrainbow/article/details/36629339
Hive是什么
Hive 提供了一个让大家可以使用sql去查询数据的途径。但是最好不要拿Hive进行实时的查询。因为Hive的实现原理是把sql语句转化为多个Map Reduce任务所以Hive非常慢,官方文档说Hive 适用于高延时性的场景而且很费资源。
举个简单的例子,可以像这样去查询
hive> select * from h_employee; OK 1 1 peter 2 2 paul Time taken: 9.289 seconds, Fetched: 2 row(s)
这个h_employee不一定是一个数据库表
metastore
Hive 中建立的表都叫metastore表。这些表并不真实的存储数据,而是定义真实数据跟hive之间的映射,就像传统数据库中表的meta信息,所以叫做metastore。实际存储的时候可以定义的存储模式有四种:
内部表(默认)分区表桶表外部表 举个例子,这是一个简历内部表的语句CREATE TABLE worker(id INT, name STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054';
这个语句的意思是建立一个worker的内部表,内部表是默认的类型,所以不用写存储的模式。并且使用逗号作为分隔符存储
建表语句支持的类型
基本数据类型tinyint / smalint / int /bigint
float / double
boolean
string
复杂数据类型
Array/Map/Struct
没有date /datetime
建完的表存在哪里呢?
在 /user/hive/warehouse 里面,可以通过hdfs来查看建完的表位置$ hdfs dfs -ls /user/hive/warehouse Found 11 items drwxrwxrwt - root supergroup 0 2014-12-02 14:42 /user/hive/warehouse/h_employee drwxrwxrwt - root supergroup 0 2014-12-02 14:42 /user/hive/warehouse/h_employee2 drwxrwxrwt - wlsuser supergroup 0 2014-12-04 17:21 /user/hive/warehouse/h_employee_export drwxrwxrwt - root supergroup 0 2014-08-18 09:20 /user/hive/warehouse/h_http_access_logs drwxrwxrwt - root supergroup 0 2014-06-30 10:15 /user/hive/warehouse/hbase_apache_access_log drwxrwxrwt - username supergroup 0 2014-06-27 17:48 /user/hive/warehouse/hbase_table_1 drwxrwxrwt - username supergroup 0 2014-06-30 09:21 /user/hive/warehouse/hbase_table_2 drwxrwxrwt - username supergroup 0 2014-06-30 09:43 /user/hive/warehouse/hive_apache_accesslog drwxrwxrwt - root supergroup 0 2014-12-02 15:12 /user/hive/warehouse/hive_employee
一个文件夹对应一个metastore表
Hive 各种类型表使用
内部表
CREATE TABLE workers( id INT, name STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054';
通过这样的语句就建立了一个内部表叫 workers,并且分隔符是逗号, \054 是ASCII 码
我们可以通过 show tables; 来看看有多少表,其实hive的很多语句是模仿mysql的,当你们不知道语句的时候,把mysql的语句拿来基本可以用。除了limit比较怪,这个后面会说
hive> show tables; OK h_employee h_employee2 h_employee_export h_http_access_logs hive_employee workers Time taken: 0.371 seconds, Fetched: 6 row(s)
建立完后,我们试着插入几条数据。这边要告诉大家Hive不支持单句插入的语句,必须批量,所以不要指望能用insert into workers values (1,'jack') 这样的语句插入数据。hive支持的插入数据的方式有两种: 从文件读取数据从别的表读出数据插入(insert from select) 这里我采用从文件读数据进来。先建立一个叫 worker.csv的文件
$ cat workers.csv 1,jack 2,terry 3,michael
用LOAD DATA 导入到Hive的表中
hive> LOAD DATA LOCAL INPATH '/home/alex/workers.csv' INTO TABLE workers; Copying data from file:/home/alex/workers.csv Copying file: file:/home/alex/workers.csv Loading data to table default.workers Table default.workers stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 25, raw_data_size: 0] OK Time taken: 0.655 seconds
注意 不要少了那个 LOCAL , LOAD DATA LOCAL INPATH 跟 LOAD DATA INPATH 的区别是一个是从你本地磁盘上找源文件,一个是从hdfs上找文件如果加上OVERWRITE可以再导入之前先清空表,比如 LOAD DATA LOCAL INPATH '/home/alex/workers.csv' OVERWRITE INTO TABLE workers; 查询一下数据
hive> select * from workers; OK 1 jack 2 terry 3 michael Time taken: 0.177 seconds, Fetched: 3 row(s)
我们去看下导入后在hive内部表是怎么存的
# hdfs dfs -ls /user/hive/warehouse/workers/ Found 1 items -rwxrwxrwt 2 root supergroup 25 2014-12-08 15:23 /user/hive/warehouse/workers/workers.csv
原来就是原封不动的把文件拷贝进去啊!就是这么土! 我们可以试验再放一个文件 workers2.txt (我故意把扩展名换一个,其实hive是不看扩展名的)
# cat workers2.txt 4,peter 5,kate 6,ted
导入
hive> LOAD DATA LOCAL INPATH '/home/alex/workers2.txt' INTO TABLE workers; Copying data from file:/home/alex/workers2.txt Copying file: file:/home/alex/workers2.txt Loading data to table default.workers Table default.workers stats: [num_partitions: 0, num_files: 2, num_rows: 0, total_size: 46, raw_data_size: 0] OK Time taken: 0.79 seconds
去看下文件的存储结构
# hdfs dfs -ls /user/hive/warehouse/workers/ Found 2 items -rwxrwxrwt 2 root supergroup 25 2014-12-08 15:23 /user/hive/warehouse/workers/workers.csv -rwxrwxrwt 2 root supergroup 21 2014-12-08 15:29 /user/hive/warehouse/workers/workers2.txt
多出来一个workers2.txt 再用sql查询下
hive> select * from workers; OK 1 jack 2 terry 3 michael 4 peter 5 kate 6 ted Time taken: 0.144 seconds, Fetched: 6 row(s)
分区表
分区表是用来加速查询的,比如你的数据非常多,但是你的应用场景是基于这些数据做日报表,那你就可以根据日进行分区,当你要做2014-05-05的报表的时候只需要加载2014-05-05这一天的数据就行了。我们来创建一个分区表来看下create table partition_employee(id int, name string) partitioned by(daytime string) row format delimited fields TERMINATED BY '\054';
可以看到分区的属性,并不是任何一个列 我们先建立2个测试数据文件,分别对应两天的数据
# cat 2014-05-05 22,kitty 33,lily # cat 2014-05-06 14,sami 45,micky
导入到分区表里面
hive> LOAD DATA LOCAL INPATH '/home/alex/2014-05-05' INTO TABLE partition_employee partition(daytime='2014-05-05'); Copying data from file:/home/alex/2014-05-05 Copying file: file:/home/alex/2014-05-05 Loading data to table default.partition_employee partition (daytime=2014-05-05) Partition default.partition_employee{daytime=2014-05-05} stats: [num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0] Table default.partition_employee stats: [num_partitions: 1, num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0] OK Time taken: 1.154 seconds hive> LOAD DATA LOCAL INPATH '/home/alex/2014-05-06' INTO TABLE partition_employee partition(daytime='2014-05-06'); Copying data from file:/home/alex/2014-05-06 Copying file: file:/home/alex/2014-05-06 Loading data to table default.partition_employee partition (daytime=2014-05-06) Partition default.partition_employee{daytime=2014-05-06} stats: [num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0] Table default.partition_employee stats: [num_partitions: 2, num_files: 2, num_rows: 0, total_size: 42, raw_data_size: 0] OK Time taken: 0.763 seconds
导入的时候通过 partition 来指定分区。
查询的时候通过指定分区来查询
hive> select * from partition_employee where daytime='2014-05-05'; OK 22 kitty 2014-05-05 33 lily 2014-05-05 Time taken: 0.173 seconds, Fetched: 2 row(s)
我的查询语句并没有什么特别的语法,hive 会自动判断你的where语句中是否包含分区的字段。而且可以使用大于小于等运算符
hive> select * from partition_employee where daytime>='2014-05-05'; OK 22 kitty 2014-05-05 33 lily 2014-05-05 14 sami 2014-05-06 45 mick' 2014-05-06 Time taken: 0.273 seconds, Fetched: 4 row(s)
我们去看看存储的结构
# hdfs dfs -ls /user/hive/warehouse/partition_employee Found 2 items drwxrwxrwt - root supergroup 0 2014-12-08 15:57 /user/hive/warehouse/partition_employee/daytime=2014-05-05 drwxrwxrwt - root supergroup 0 2014-12-08 15:57 /user/hive/warehouse/partition_employee/daytime=2014-05-06
我们试试二维的分区表
create table p_student(id int, name string) partitioned by(daytime string,country string) row format delimited fields TERMINATED BY '\054';
查入一些数据
# cat 2014-09-09-CN 1,tammy 2,eric # cat 2014-09-10-CN 3,paul 4,jolly # cat 2014-09-10-EN 44,ivan 66,billy
导入hive
hive> LOAD DATA LOCAL INPATH '/home/alex/2014-09-09-CN' INTO TABLE p_student partition(daytime='2014-09-09',country='CN'); Copying data from file:/home/alex/2014-09-09-CN Copying file: file:/home/alex/2014-09-09-CN Loading data to table default.p_student partition (daytime=2014-09-09, country=CN) Partition default.p_student{daytime=2014-09-09, country=CN} stats: [num_files: 1, num_rows: 0, total_size: 19, raw_data_size: 0] Table default.p_student stats: [num_partitions: 1, num_files: 1, num_rows: 0, total_size: 19, raw_data_size: 0] OK Time taken: 0.736 seconds hive> LOAD DATA LOCAL INPATH '/home/alex/2014-09-10-CN' INTO TABLE p_student partition(daytime='2014-09-10',country='CN'); Copying data from file:/home/alex/2014-09-10-CN Copying file: file:/home/alex/2014-09-10-CN Loading data to table default.p_student partition (daytime=2014-09-10, country=CN) Partition default.p_student{daytime=2014-09-10, country=CN} stats: [num_files: 1, num_rows: 0, total_size: 19, raw_data_size: 0] Table default.p_student stats: [num_partitions: 2, num_files: 2, num_rows: 0, total_size: 38, raw_data_size: 0] OK Time taken: 0.691 seconds hive> LOAD DATA LOCAL INPATH '/home/alex/2014-09-10-EN' INTO TABLE p_student partition(daytime='2014-09-10',country='EN'); Copying data from file:/home/alex/2014-09-10-EN Copying file: file:/home/alex/2014-09-10-EN Loading data to table default.p_student partition (daytime=2014-09-10, country=EN) Partition default.p_student{daytime=2014-09-10, country=EN} stats: [num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0] Table default.p_student stats: [num_partitions: 3, num_files: 3, num_rows: 0, total_size: 59, raw_data_size: 0] OK Time taken: 0.622 seconds
看看存储结构
# hdfs dfs -ls /user/hive/warehouse/p_student Found 2 items drwxr-xr-x - root supergroup 0 2014-12-08 16:10 /user/hive/warehouse/p_student/daytime=2014-09-09 drwxr-xr-x - root supergroup 0 2014-12-08 16:10 /user/hive/warehouse/p_student/daytime=2014-09-10 # hdfs dfs -ls /user/hive/warehouse/p_student/daytime=2014-09-09 Found 1 items drwxr-xr-x - root supergroup 0 2014-12-08 16:10 /user/hive/warehouse/p_student/daytime=2014-09-09/country=CN
查询一下数据
hive> select * from p_student; OK 1 tammy 2014-09-09 CN 2 eric 2014-09-09 CN 3 paul 2014-09-10 CN 4 jolly 2014-09-10 CN 44 ivan 2014-09-10 EN 66 billy 2014-09-10 EN Time taken: 0.228 seconds, Fetched: 6 row(s)
hive> select * from p_student where daytime='2014-09-10' and country='EN'; OK 44 ivan 2014-09-10 EN 66 billy 2014-09-10 EN Time taken: 0.224 seconds, Fetched: 2 row(s)
桶表
桶表是根据某个字段的hash值,来将数据扔到不同的“桶”里面。外国人有个习惯,就是分类东西的时候摆几个桶,上面贴不同的标签,所以他们取名的时候把这种表形象的取名为桶表。桶表表专门用于采样分析下面这个例子是官网教程直接拷贝下来的,因为分区表跟桶表是可以同时使用的,所以这个例子中同时使用了分区跟桶两种特性
CREATE TABLE b_student(id INT, name STRING) PARTITIONED BY(dt STRING, country STRING) CLUSTERED BY(id) SORTED BY(name) INTO 4 BUCKETS row format delimited fields TERMINATED BY '\054';
意思是根据userid来进行计算hash值,用viewTIme来排序存储 做数据跟导入的过程我就不在赘述了,这是导入后的数据
hive> select * from b_student; OK 1 tammy 2014-09-09 CN 2 eric 2014-09-09 CN 3 paul 2014-09-10 CN 4 jolly 2014-09-10 CN 34 allen 2014-09-11 EN Time taken: 0.727 seconds, Fetched: 5 row(s)
从4个桶中采样抽取一个桶的数据
hive> select * from b_student tablesample(bucket 1 out of 4 on id); Total MapReduce jobs = 1 Launching Job 1 out of 1 Number of reduce tasks is set to 0 since there's no reduce operator Starting Job = job_1406097234796_0041, Tracking URL = http://hadoop01:8088/proxy/application_1406097234796_0041/ Kill Command = /usr/lib/hadoop/bin/hadoop job -kill job_1406097234796_0041 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0 2014-12-08 17:35:56,995 Stage-1 map = 0%, reduce = 0% 2014-12-08 17:36:06,783 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.9 sec 2014-12-08 17:36:07,845 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.9 sec MapReduce Total cumulative CPU time: 2 seconds 900 msec Ended Job = job_1406097234796_0041 MapReduce Jobs Launched: Job 0: Map: 1 Cumulative CPU: 2.9 sec HDFS Read: 482 HDFS Write: 22 SUCCESS Total MapReduce CPU Time Spent: 2 seconds 900 msec OK 4 jolly 2014-09-10 CN
外部表
外部表就是存储不是由hive来存储的,比如可以依赖Hbase来存储,hive只是做一个映射而已。我用Hbase来举例先建立一张Hbase表叫 employee
hbase(main):005:0> create 'employee','info' 0 row(s) in 0.4740 seconds => Hbase::Table - employee hbase(main):006:0> put 'employee',1,'info:id',1 0 row(s) in 0.2080 seconds hbase(main):008:0> scan 'employee' ROW COLUMN+CELL 1 column=info:id, timestamp=1417591291730, value=1 1 row(s) in 0.0610 seconds hbase(main):009:0> put 'employee',1,'info:name','peter' 0 row(s) in 0.0220 seconds hbase(main):010:0> scan 'employee' ROW COLUMN+CELL 1 column=info:id, timestamp=1417591291730, value=1 1 column=info:name, timestamp=1417591321072, value=peter 1 row(s) in 0.0450 seconds hbase(main):011:0> put 'employee',2,'info:id',2 0 row(s) in 0.0370 seconds hbase(main):012:0> put 'employee',2,'info:name','paul' 0 row(s) in 0.0180 seconds hbase(main):013:0> scan 'employee' ROW COLUMN+CELL 1 column=info:id, timestamp=1417591291730, value=1 1 column=info:name, timestamp=1417591321072, value=peter 2 column=info:id, timestamp=1417591500179, value=2 2 column=info:name, timestamp=1417591512075, value=paul 2 row(s) in 0.0440 seconds
建立外部表进行映射
hive> CREATE EXTERNAL TABLE h_employee(key int, id int, name string) > STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' > WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key, info:id,info:name") > TBLPROPERTIES ("hbase.table.name" = "employee"); OK Time taken: 0.324 seconds hive> select * from h_employee; OK 1 1 peter 2 2 paul Time taken: 1.129 seconds, Fetched: 2 row(s)
查询语法
具体语法可以参考官方手册https://cwiki.apache.org/confluence/display/Hive/Tutorial 我只说几个比较奇怪的点显示条数
展示x条数据,用的还是limit,比如hive> select * from h_employee limit 1 > ; OK 1 1 peter Time taken: 0.284 seconds, Fetched: 1 row(s)
下课!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Dewu APP는 현재 매우 인기 있는 브랜드 쇼핑 소프트웨어이지만 대부분의 사용자는 Dewu APP의 기능을 사용하는 방법을 모릅니다. 다음으로 편집기는 Dewuduo를 사용자에게 제공합니다. 관심 있는 사용자는 와서 살펴볼 수 있습니다! Dewu 이용방법 튜토리얼 [2024-03-20] Dewu 할부구매 이용방법 [2024-03-20] Dewu 쿠폰 받는 방법 [2024-03-20] Dewu 매뉴얼 고객센터 찾는 방법 [2024-03- 20] 듀우 픽업 코드 확인 방법 [2024-03-20] 듀우 구매처 찾기 [2024-03-20] 듀우 VIP 개설 방법 [2024-03-20] 듀우 반품, 교환 신청 방법

numpy 버전 업그레이드 방법: 따라하기 쉬운 튜토리얼, 구체적인 코드 예제 필요 소개: NumPy는 과학 컴퓨팅에 사용되는 중요한 Python 라이브러리입니다. 효율적인 수치 연산을 수행하는 데 사용할 수 있는 강력한 다차원 배열 객체와 일련의 관련 함수를 제공합니다. 새 버전이 출시되면 새로운 기능과 버그 수정이 지속적으로 제공됩니다. 이 문서에서는 설치된 NumPy 라이브러리를 업그레이드하여 최신 기능을 얻고 알려진 문제를 해결하는 방법을 설명합니다. 1단계: 처음에 현재 NumPy 버전을 확인하세요.

여름에 비가 내린 후에는 아름답고 마법 같은 특별한 날씨 장면인 무지개를 자주 볼 수 있습니다. 이 역시 사진에서 볼 수 있는 보기 드문 장면으로, 매우 포토제닉하다. 무지개가 나타나는 데에는 몇 가지 조건이 있습니다. 첫째, 공기 중에 충분한 물방울이 있고, 둘째, 태양이 낮은 각도로 빛납니다. 따라서 비가 그친 후 오후에 무지개를 보는 것이 가장 쉽습니다. 그러나 무지개의 형성은 날씨, 빛, 기타 조건의 영향을 크게 받기 때문에 일반적으로 짧은 시간 동안만 지속되며, 가장 잘 볼 수 있고 촬영할 수 있는 시간은 더욱 짧습니다. 그러면 무지개를 만났을 때 어떻게 제대로 기록하고 고품질로 사진을 찍을 수 있습니까? 1. 무지개를 찾아보세요. 위에서 언급한 조건 외에도 무지개는 대개 햇빛 방향으로 나타납니다. 즉, 태양이 서쪽에서 동쪽으로 빛날 경우 무지개가 동쪽에서 나타날 확률이 높습니다.

1. 먼저 위챗을 엽니다. 2. 오른쪽 상단의 [+]를 클릭하세요. 3. QR코드를 클릭하시면 결제가 진행됩니다. 4. 오른쪽 상단에 있는 세 개의 작은 점을 클릭하세요. 5. 결제도착 음성알림을 클릭하시면 종료됩니다.

모니터 구입 시 테스트는 파손 구입을 피하기 위해 꼭 필요한 부분입니다. 오늘은 모니터 테스트를 위한 소프트웨어 사용법을 알려드리겠습니다. 방법 단계 1. 먼저 본 사이트에서 DisplayX 소프트웨어를 검색하여 다운로드한 후 설치하고 열면 사용자에게 제공되는 다양한 감지 방법을 확인할 수 있습니다. 2. 사용자는 일반 전체 테스트를 클릭합니다. 첫 번째 단계는 디스플레이의 밝기를 테스트하여 상자가 선명하게 보이도록 조정하는 것입니다. 3. 그런 다음 마우스를 클릭하여 다음 링크를 입력합니다. 모니터가 각 흑백 영역을 구분할 수 있으면 모니터가 여전히 양호하다는 의미입니다. 4. 마우스 왼쪽 버튼을 다시 클릭하면 모니터의 그레이스케일 테스트를 볼 수 있습니다. 색상 전환이 매끄러울수록 모니터가 더 좋아진 것입니다. 5. 또한, 우리는 displayx 소프트웨어에서

PhotoshopCS는 Photoshop Creative Suite의 약자로 Adobe에서 제작한 소프트웨어입니다. 그래픽 디자인 및 이미지 처리에 널리 사용됩니다. PS를 처음 배우는 사용자로서 오늘은 photoshopcs5가 무엇인지, photoshopcs5를 사용하는 방법에 대해 설명하겠습니다. . 1. Photoshop CS5는 어떤 소프트웨어입니까? Adobe Photoshop CS5 Extended는 영화, 비디오 및 멀티미디어 분야의 전문가, 3D 및 애니메이션을 사용하는 그래픽 및 웹 디자이너, 엔지니어링 및 과학 분야의 전문가에게 이상적입니다. 3D 이미지를 렌더링하고 이를 2D 합성 이미지로 병합합니다. 쉽게 비디오 편집

스마트폰의 지속적인 발전과 함께 휴대폰의 기능은 점점 더 강력해졌고, 그 중 장사진 촬영 기능은 많은 사용자들이 일상생활에서 사용하는 중요한 기능 중 하나로 자리 잡았다. 긴 스크린샷은 사용자가 쉽게 보고 공유할 수 있도록 긴 웹페이지, 대화 기록, 사진을 한 번에 저장하는 데 도움이 됩니다. 많은 휴대폰 브랜드 중에서 Huawei 휴대폰은 사용자들로부터 높은 평가를 받는 브랜드 중 하나이며, 긴 사진을 자르는 기능도 높은 평가를 받고 있습니다. 이 기사에서는 Huawei 휴대폰으로 장사진을 찍는 올바른 방법과 Huawei 휴대폰을 더 잘 활용하는 데 도움이 되는 몇 가지 전문가 팁을 소개합니다.

PHP 튜토리얼: Int 유형을 문자열로 변환하는 방법 PHP에서는 정수 데이터를 문자열로 변환하는 것이 일반적인 작업입니다. 이 튜토리얼에서는 특정 코드 예제를 제공하면서 PHP의 내장 함수를 사용하여 int 유형을 문자열로 변환하는 방법을 소개합니다. 캐스트 사용: PHP에서는 캐스트를 사용하여 정수 데이터를 문자열로 변환할 수 있습니다. 이 방법은 매우 간단합니다. 정수 데이터 앞에 (문자열)을 추가하면 문자열로 변환됩니다. 아래는 간단한 샘플 코드입니다.
