T-SQL基础教程:集合理论
集合理论是由数学家Georg Cantor创建的,这是一个基于关系模型的数学分支。Cantor的集定义如下: 集合,我们的意思是:任意集合体M是我们感知或想到的,能够确定的、互异对象m(称之为M的元素)的整体。 ──Joseph W. Dauben和Georg Cantor(普林斯顿大学出版
集合理论是由数学家Georg Cantor创建的,这是一个基于关系模型的数学分支。Cantor的集定义如下:
集合,我们的意思是:任意集合体M是我们感知或想到的,能够确定的、互异对象m(称之为M的元素)的整体。
──Joseph W. Dauben和Georg Cantor(普林斯顿大学出版社,1990年)
定义中的每个字都有着深刻和重要意义。集合定义和集合从属关系是无需证明的公理,宇宙中的每个元素要么是集合成员,要么不是集合成员。
让我们从Cantor定义中的每个词开始。一个“集合”应将其视为单个实体,你的焦点应该放在对象的集合上,而不是组成集合的单个对象上。然后,当你对数据库中的表(如雇员表)编写T-SQL查询时,你应该将雇员的集合看作是一个整体,而不是单个的雇员。这听起来可能并不重要并且很简单,但显然很多程序员很难采用这种思维方式。
“互异”这个词的含义是指集合中的每个元素必须是唯一的。跳跃到数据库中的表,你可以通过定义键约束来强制表中行的唯一性。没有键的话,你就不能唯一地标识行,因此表也就不能取得“集合”资格。相反,该表将是一个多重集合或是一个无序的单位组。
“我们感知或想到的”这句话意味着集合的定义是主观的。思考一下教室:一个人可以被认为是“人”的集合,也有可能被认为是“学生”或“教师”的集合。因此,在定义集合方面你具有很大的自由度。当你为数据库设计数据模型时,设计过程应仔细考虑应用程序的主观需求,从而为相关实体确定恰当的定义。
至于“对象”,,集合的定义不是限制为像汽车或雇员这样的物理对象,而是相关的抽象对象,如质数或线条。
Cantor的集合定义省略掉的内容很可能像所包含的内容一样重要。请注意,定义中没有提到集合元素间的任何顺序,集合元素的列出顺序并不重要。列出集合元素的正式标记符号是使用大括号:{a、b、c}。因为与顺序无关,你可以使用{b, a, c}或{b, c, a}表示同一集合。跳跃到属性(SQL中称之为列)集合,它们组成了关系(SQL中称之为表)的表头,元素应该是按名称标识──而不是按顺序位置标识。
同样,思考一下元组(SQL中称之为行)的设置,它们构成了关系的主体,元素由其键值进行标识,而不是按位置标识。许多程序员很难适应这种观念,对于查询表而言,行之间没有顺序。换句话说,对表的查询可以按任意顺序返回表中的行,除非你基于特定展现目的,明确要求数据以特定方式的进行排序。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











현대 제조업에서 정확한 결함 검출은 제품 품질을 보장하는 열쇠일 뿐만 아니라 생산 효율성을 향상시키는 핵심이기도 합니다. 그러나 기존 결함 감지 데이터세트는 실제 적용에 필요한 정확성과 의미론적 풍부함이 부족한 경우가 많아 모델이 특정 결함 카테고리나 위치를 식별할 수 없게 됩니다. 이 문제를 해결하기 위해 광저우 과학기술대학교와 Simou Technology로 구성된 최고 연구팀은 산업 결함에 대한 상세하고 의미론적으로 풍부한 대규모 주석을 제공하는 "DefectSpectrum" 데이터 세트를 혁신적으로 개발했습니다. 표 1에서 볼 수 있듯이, 다른 산업 데이터 세트와 비교하여 "DefectSpectrum" 데이터 세트는 가장 많은 결함 주석(5438개의 결함 샘플)과 가장 상세한 결함 분류(125개의 결함 카테고리)를 제공합니다.

여름에 비가 내린 후에는 아름답고 마법 같은 특별한 날씨 장면인 무지개를 자주 볼 수 있습니다. 이 역시 사진에서 볼 수 있는 보기 드문 장면으로, 매우 포토제닉하다. 무지개가 나타나는 데에는 몇 가지 조건이 있습니다. 첫째, 공기 중에 충분한 물방울이 있고, 둘째, 태양이 낮은 각도로 빛납니다. 따라서 비가 그친 후 오후에 무지개를 보는 것이 가장 쉽습니다. 그러나 무지개의 형성은 날씨, 빛, 기타 조건의 영향을 크게 받기 때문에 일반적으로 짧은 시간 동안만 지속되며, 가장 잘 볼 수 있고 촬영할 수 있는 시간은 더욱 짧습니다. 그러면 무지개를 만났을 때 어떻게 제대로 기록하고 고품질로 사진을 찍을 수 있습니까? 1. 무지개를 찾아보세요. 위에서 언급한 조건 외에도 무지개는 대개 햇빛 방향으로 나타납니다. 즉, 태양이 서쪽에서 동쪽으로 빛날 경우 무지개가 동쪽에서 나타날 확률이 높습니다.

오픈 LLM 커뮤니티는 백개의 꽃이 피어 경쟁하는 시대입니다. Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 등을 보실 수 있습니다. 훌륭한 연기자. 그러나 GPT-4-Turbo로 대표되는 독점 대형 모델과 비교하면 개방형 모델은 여전히 많은 분야에서 상당한 격차를 보이고 있습니다. 일반 모델 외에도 프로그래밍 및 수학을 위한 DeepSeek-Coder-V2, 시각 언어 작업을 위한 InternVL과 같이 핵심 영역을 전문으로 하는 일부 개방형 모델이 개발되었습니다.

AI의 경우 수학 올림피아드는 더 이상 문제가 되지 않습니다. 목요일에 Google DeepMind의 인공 지능은 AI를 사용하여 올해 국제 수학 올림피아드 IMO의 실제 문제를 해결하는 위업을 달성했으며 금메달 획득에 한 걸음 더 다가섰습니다. 지난 주 막 끝난 IMO 대회에는 대수학, 조합론, 기하학, 수론 등 6개 문제가 출제됐다. 구글이 제안한 하이브리드 AI 시스템은 4문제를 맞혀 28점을 얻어 은메달 수준에 이르렀다. 이달 초 UCLA 종신 교수인 테렌스 타오(Terence Tao)가 상금 100만 달러의 AI 수학 올림피아드(AIMO Progress Award)를 추진했는데, 예상외로 7월 이전에 AI 문제 해결 수준이 이 수준으로 향상됐다. IMO에서 동시에 질문을 해보세요. 가장 정확하게 하기 어려운 것이 IMO인데, 역사도 가장 길고, 규모도 가장 크며, 가장 부정적이기도 합니다.

Editor | ScienceAI 제한된 임상 데이터를 기반으로 수백 개의 의료 알고리즘이 승인되었습니다. 과학자들은 누가 도구를 테스트해야 하며 최선의 방법은 무엇인지에 대해 토론하고 있습니다. 데빈 싱(Devin Singh)은 응급실에서 오랜 시간 치료를 기다리던 중 심장마비를 겪는 소아환자를 목격했고, 이를 계기로 대기시간을 단축하기 위해 AI 적용을 모색하게 됐다. SickKids 응급실의 분류 데이터를 사용하여 Singh과 동료들은 잠재적인 진단을 제공하고 테스트를 권장하는 일련의 AI 모델을 구축했습니다. 한 연구에 따르면 이러한 모델은 의사 방문 속도를 22.3% 단축하여 의료 검사가 필요한 환자당 결과 처리 속도를 거의 3시간 단축할 수 있는 것으로 나타났습니다. 그러나 인공지능 알고리즘의 연구 성공은 이를 입증할 뿐이다.

Editor |KX 오늘날까지 단순한 금속부터 큰 막 단백질에 이르기까지 결정학을 통해 결정되는 구조적 세부 사항과 정밀도는 다른 어떤 방법과도 비교할 수 없습니다. 그러나 가장 큰 과제인 소위 위상 문제는 실험적으로 결정된 진폭에서 위상 정보를 검색하는 것입니다. 덴마크 코펜하겐 대학의 연구원들은 결정 위상 문제를 해결하기 위해 PhAI라는 딥러닝 방법을 개발했습니다. 수백만 개의 인공 결정 구조와 그에 상응하는 합성 회절 데이터를 사용하여 훈련된 딥러닝 신경망은 정확한 전자 밀도 맵을 생성할 수 있습니다. 연구는 이 딥러닝 기반의 순순한 구조 솔루션 방법이 단 2옹스트롬의 해상도로 위상 문제를 해결할 수 있음을 보여줍니다. 이는 원자 해상도에서 사용할 수 있는 데이터의 10~20%에 해당하는 반면, 기존의 순순한 계산은

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

편집자 | Ziluo AI의 신약 개발 간소화에 대한 활용이 폭발적으로 증가하고 있습니다. 신약 개발에 필요한 특성을 가질 수 있는 수십억 개의 후보 분자를 스크리닝합니다. 재료 가격부터 오류 위험까지 고려해야 할 변수가 너무 많아 과학자들이 AI를 사용하더라도 최고의 후보 분자를 합성하는 데 드는 비용을 평가하는 것은 쉬운 일이 아닙니다. 여기서 MIT 연구진은 최고의 분자 후보를 자동으로 식별하여 합성 비용을 최소화하는 동시에 후보가 원하는 특성을 가질 가능성을 최대화하기 위해 정량적 의사결정 알고리즘 프레임워크인 SPARROW를 개발했습니다. 알고리즘은 또한 이러한 분자를 합성하는 데 필요한 재료와 실험 단계를 결정했습니다. SPARROW는 여러 후보 분자를 사용할 수 있는 경우가 많기 때문에 한 번에 분자 배치를 합성하는 비용을 고려합니다.
