목차
基本理论基础
데이터 베이스 MySQL 튜토리얼 互联网百万级应用的大数据处理问题

互联网百万级应用的大数据处理问题

Jun 07, 2016 pm 04:24 PM
인터넷 다루다 문제를 다루다 데이터 용적 백만

我说的大数据量处理是指同时需要对数据进行检索查询,同时有高并发的增删改操作。记得以前在XX做电力时,几百万条数据,那时一个检索查询可以让你等你分钟。现在我是想探讨下对大数据量的处理,那时我就在想例如腾讯,盛大,动辄数以亿计的帐号,怎么能这么

我说的大数据量处理是指同时需要对数据进行检索查询,同时有高并发的增删改操作。记得以前在XX做电力时,几百万条数据,那时一个检索查询可以让你等你分钟。现在我是想探讨下对大数据量的处理,那时我就在想例如腾讯,盛大,动辄数以亿计的帐号,怎么能这么快呢, 于是找到了互联网现在对数据处理的发展。

对于大数据量处理,如果是互联网处理的话,一般分为下面阶段:

  1. 第一阶段,所有数据都装入一个数据库,当数据量大了肯定就会出现问题,就像刚刚说的查询,于是想办法。
  2. 第二阶段,那时肯定想做缓存机制,确实可以如加上缓存Memcached,但缓存也是治标不治本,数据量太大了也是不行,于是有了下面的方法。
  3. 第三阶段,master-slave模式,进行主从数据库,master提供写,slave进行读,这个适合于有写造成数据库卡的方法,XX那个还是不行,于是——
  4. 第四阶段,垂直分库,这个意义还是不大,对于这种采集数据的,于是——
  5. 第五阶段,进行水平分库,这个不错,记得以前从兴也是按这个分时间水平分库,其实可以分的更细点估计效果更好
  6. 第六阶段,用nosql做了,关于nosql怎么做可以参考google的bigtable

其实本文主要目的也是想探讨nosql对大数据量的处理:

NOSQL就是将写操作在内存中进行,定时或按某一条件将内存中的数据直接写到磁盘上,一定基础上是解决了一些问题:

  1. 高并发读写的需求?
  2. 海量数据访问的需求
  3. 数据库横向扩展性的需求

CAP理论来说,nosql是牺牲了一致性,做到了AP,一致性只是保证了最终一致性。

缺点也很明显:

1. 当机器挂了数据将会丢失,可以考虑共享内存解决。

补充:其实这里可以展开了讲,一种是通过共享内存来实现。

集群内存:根据的是Quorum NRW理论,比如你有N台机子用来集群,每次你进行读写数据时可以至少要同步到X个节点才算成功,所以你每次读数据时只需要读大于N-X个节点就能保持你的正确率,其实就是对数据进行的冗余备份,不过我们存的是内存,相对于直接的磁盘操作,跨网络进行内存操作可以更快。

其实还一种保证数据一致性,就是记录日志,当数据每次写操作内存时都进行日志记录,然后再在内存中进行写操作,至少很多数据库就是这样做的,如redis。

2. 内存的限制,内存有限当写数据操作太大的时候内存也会爆。

解决:Bigtable的做法是通过bloom-filter算法合并掉相同的操作,比如UPDATE A='A' ,update A='B'时可以直接合并了。

基本理论基础

nosql理论基础:内存是新的硬盘,硬盘是新的磁盘

关系型数据库都要实现事务ACID,即:原子性(Atomicity),一致性(Consistency),隔离性(Isolation), 持久性(Durability)。

CAP理论:

  • Consistency 一致性
  • Availability -可用性
  • Partition -容错性

?大多数NoSQL数据库都不支持事务,不支持SQL等,所以还是得保留关系型数据库。现在有人提到用内存数据库, 总体如果是简单业务来说,NOSQL的速度比内存数据库更快,但NOSQL最大缺点,不支持事务,不支持SQL查询等。

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

ddrescue를 사용하여 Linux에서 데이터 복구 ddrescue를 사용하여 Linux에서 데이터 복구 Mar 20, 2024 pm 01:37 PM

DDREASE는 하드 드라이브, SSD, RAM 디스크, CD, DVD 및 USB 저장 장치와 같은 파일 또는 블록 장치에서 데이터를 복구하기 위한 도구입니다. 한 블록 장치에서 다른 블록 장치로 데이터를 복사하여 손상된 데이터 블록은 남겨두고 양호한 데이터 블록만 이동합니다. ddreasue는 복구 작업 중에 간섭이 필요하지 않으므로 완전히 자동화된 강력한 복구 도구입니다. 게다가 ddasue 맵 파일 덕분에 언제든지 중지하고 다시 시작할 수 있습니다. DDREASE의 다른 주요 기능은 다음과 같습니다. 복구된 데이터를 덮어쓰지 않지만 반복 복구 시 공백을 채웁니다. 그러나 도구에 명시적으로 지시된 경우에는 잘릴 수 있습니다. 여러 파일이나 블록의 데이터를 단일 파일로 복구

오픈 소스! ZoeDepth를 넘어! DepthFM: 빠르고 정확한 단안 깊이 추정! 오픈 소스! ZoeDepth를 넘어! DepthFM: 빠르고 정확한 단안 깊이 추정! Apr 03, 2024 pm 12:04 PM

0. 이 글은 어떤 내용을 담고 있나요? 우리는 다재다능하고 빠른 최첨단 생성 단안 깊이 추정 모델인 DepthFM을 제안합니다. DepthFM은 전통적인 깊이 추정 작업 외에도 깊이 인페인팅과 같은 다운스트림 작업에서 최첨단 기능을 보여줍니다. DepthFM은 효율적이며 몇 가지 추론 단계 내에서 깊이 맵을 합성할 수 있습니다. 이 작품을 함께 읽어보아요~ 1. 논문 정보 제목: DepthFM: FastMoncularDepthEstimationwithFlowMatching 저자: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

CPU를 너무 많이 점유하는 WIN10 서비스 호스트의 동작 과정 CPU를 너무 많이 점유하는 WIN10 서비스 호스트의 동작 과정 Mar 27, 2024 pm 02:41 PM

1. 먼저 작업 표시줄의 빈 공간을 마우스 오른쪽 버튼으로 클릭하고 [작업 관리자] 옵션을 선택하거나, 시작 로고를 마우스 오른쪽 버튼으로 클릭한 후 [작업 관리자] 옵션을 선택합니다. 2. 열린 작업 관리자 인터페이스에서 맨 오른쪽에 있는 [서비스] 탭을 클릭합니다. 3. 열린 [서비스] 탭에서 아래의 [서비스 열기] 옵션을 클릭하세요. 4. 열리는 [서비스] 창에서 [InternetConnectionSharing(ICS)] 서비스를 마우스 오른쪽 버튼으로 클릭한 후 [속성] 옵션을 선택하세요. 5. 열리는 속성 창에서 [연결 프로그램]을 [사용 안 함]으로 변경하고 [적용]을 클릭한 후 [확인]을 클릭하세요. 6. 시작 로고를 클릭한 후 종료 버튼을 클릭하고 [다시 시작]을 선택한 후 컴퓨터를 다시 시작합니다.

Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Apr 01, 2024 pm 07:46 PM

Google이 추진하는 JAX의 성능은 최근 벤치마크 테스트에서 Pytorch와 TensorFlow를 능가하여 7개 지표에서 1위를 차지했습니다. 그리고 JAX 성능이 가장 좋은 TPU에서는 테스트가 이루어지지 않았습니다. 개발자들 사이에서는 여전히 Tensorflow보다 Pytorch가 더 인기가 있습니다. 그러나 앞으로는 더 큰 모델이 JAX 플랫폼을 기반으로 훈련되고 실행될 것입니다. 모델 최근 Keras 팀은 기본 PyTorch 구현을 사용하여 세 가지 백엔드(TensorFlow, JAX, PyTorch)와 TensorFlow를 사용하는 Keras2를 벤치마킹했습니다. 첫째, 그들은 주류 세트를 선택합니다.

iPhone의 느린 셀룰러 데이터 인터넷 속도: 수정 사항 iPhone의 느린 셀룰러 데이터 인터넷 속도: 수정 사항 May 03, 2024 pm 09:01 PM

지연이 발생하고 iPhone의 모바일 데이터 연결 속도가 느립니까? 일반적으로 휴대폰의 셀룰러 인터넷 강도는 지역, 셀룰러 네트워크 유형, 로밍 유형 등과 같은 여러 요소에 따라 달라집니다. 더 빠르고 안정적인 셀룰러 인터넷 연결을 얻기 위해 할 수 있는 일이 몇 가지 있습니다. 수정 1 – iPhone 강제 다시 시작 때로는 장치를 강제로 다시 시작하면 셀룰러 연결을 포함한 많은 항목이 재설정됩니다. 1단계 – 볼륨 높이기 키를 한 번 눌렀다가 놓습니다. 그런 다음 볼륨 작게 키를 눌렀다가 다시 놓습니다. 2단계 - 프로세스의 다음 부분은 오른쪽에 있는 버튼을 누르는 것입니다. iPhone이 다시 시작되도록 하세요. 셀룰러 데이터를 활성화하고 네트워크 속도를 확인하세요. 다시 확인하세요 수정 2 – 데이터 모드 변경 5G는 더 나은 네트워크 속도를 제공하지만 신호가 약할 때 더 잘 작동합니다

초지능의 생명력이 깨어난다! 하지만 자동 업데이트 AI가 등장하면서 엄마들은 더 이상 데이터 병목 현상을 걱정할 필요가 없습니다. 초지능의 생명력이 깨어난다! 하지만 자동 업데이트 AI가 등장하면서 엄마들은 더 이상 데이터 병목 현상을 걱정할 필요가 없습니다. Apr 29, 2024 pm 06:55 PM

세상은 미친 듯이 큰 모델을 만들고 있습니다. 인터넷의 데이터만으로는 충분하지 않습니다. 훈련 모델은 '헝거게임'처럼 생겼고, 전 세계 AI 연구자들은 이러한 데이터를 탐식하는 사람들에게 어떻게 먹이를 줄지 고민하고 있습니다. 이 문제는 다중 모드 작업에서 특히 두드러집니다. 아무것도 할 수 없던 시기에, 중국 인민대학교 학과의 스타트업 팀은 자체 새로운 모델을 사용하여 중국 최초로 '모델 생성 데이터 피드 자체'를 현실화했습니다. 또한 이해 측면과 생성 측면의 두 가지 접근 방식으로 양측 모두 고품질의 다중 모드 새로운 데이터를 생성하고 모델 자체에 데이터 피드백을 제공할 수 있습니다. 모델이란 무엇입니까? Awaker 1.0은 중관촌 포럼에 최근 등장한 대형 멀티모달 모델입니다. 팀은 누구입니까? 소폰 엔진. 런민대학교 힐하우스 인공지능대학원 박사과정 학생인 Gao Yizhao가 설립했습니다.

공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! 공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! May 06, 2024 pm 04:13 PM

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라

다섯 개의 유연한 손가락과 초인적인 속도를 갖춘 인간 작업을 자율적으로 완료하는 최초의 로봇 등장, 가상 공간 훈련을 지원하는 대형 모델 다섯 개의 유연한 손가락과 초인적인 속도를 갖춘 인간 작업을 자율적으로 완료하는 최초의 로봇 등장, 가상 공간 훈련을 지원하는 대형 모델 Mar 11, 2024 pm 12:10 PM

이번 주, 오픈AI(OpenAI), 마이크로소프트(Microsoft), 베조스(Bezos), 엔비디아(Nvidia)가 투자한 로봇 회사인 FigureAI는 약 7억 달러의 자금 조달을 받았으며 내년 내에 독립적으로 걸을 수 있는 휴머노이드 로봇을 개발할 계획이라고 발표했습니다. 그리고 Tesla의 Optimus Prime은 계속해서 좋은 소식을 받았습니다. 올해가 휴머노이드 로봇이 폭발하는 해가 될 것이라는 데는 누구도 의심하지 않는다. 캐나다에 본사를 둔 로봇 회사인 SanctuaryAI는 최근 새로운 휴머노이드 로봇인 Phoenix를 출시했습니다. 관계자들은 이 로봇이 인간과 같은 속도로 자율적으로 많은 작업을 완료할 수 있다고 주장한다. 인간의 속도로 자동으로 작업을 완료할 수 있는 세계 최초의 로봇인 Pheonix는 각 물체를 부드럽게 잡고 움직이며 우아하게 왼쪽과 오른쪽에 배치할 수 있습니다. 자동으로 물체를 식별할 수 있습니다.

See all articles