데이터 베이스 MySQL 튜토리얼 Hbase入门6 -白话MySQL(RDBMS)与HBase之间

Hbase入门6 -白话MySQL(RDBMS)与HBase之间

Jun 07, 2016 pm 04:26 PM
hbase mysql 시작하기

我的废话1: 任何一项新技术并非救命稻草,一抹一擦立马药到病除的百宝箱,并非使用Spring或者NOSQL的产品就神乎其神+五光十色,如果那样基本是扯淡。同类 型产品中不管那种技术最终要达到的目的是一样的,通过新的技术手段你往往可能避讳了当前你所需要面对

我的废话1:
   任何一项新技术并非救命稻草,一抹一擦立马药到病除的百宝箱,并非使用Spring或者NOSQL的产品就神乎其神+五光十色,如果那样基本是扯淡。同类 型产品中不管那种技术最终要达到的目的是一样的,通过新的技术手段你往往可能避讳了当前你所需要面对的问题,但过后新的问题又来了。也许回过头来看看还不 如在原来的基础上多动动脑筋 想想办法 做些改良可以得到更高的回报。  
 

   传统数据库是以数据块来存储数据,简单来说,你的表字段越多,占用的数据空间就越多,那么查询有可能就要跨数据块,将会导致查询的速度变慢。在大型系统中一张表上百个字段,并且表中的数据上亿条这是完全是有可能的。因此会带来数据库查询的瓶颈。我们都知道一个常识数据库中表记录的多少对查询的性能有非常大的影响,此时你很有可能想到分表、分库的做法来分载数据库运算的压力,那么又会带来新的问题,例如:分布式事务、全局唯一ID的生成、跨数据库查询 等,依旧会让你面对棘手的问题。如果打破这种按照行存储的模式,采用一种基于列存储的模式,对于大规模数据场景这样情况有可能发生一些好转。由于查询中的选择规则是通过列来定义的,因此整个数据库是自动索引化的。按列存储每个字段的数据聚集存储, 可以动态增加,并且列为空就不存储数据,节省存储空间。 每个字段的数据按照聚集存储,能大大减少读取的数据量,查询时指哪打哪,来的更直接。无需考虑分库、分表 Hbase将对存储的数据自动切分数据,并支持高并发读写操作,使得海量数据存储自动具有更强的扩展性。

   Java中的HashMap是Key/Value的结构,你也可以把HBase的数据结构看做是一个Key/Value的体系,话说HBase的区域由表名和行界定的。在HBase区域每一个"列族"都由一个名为HStore的对象管理。每个HStore由一个或多个MapFiles(Hadoop中的一个文件类型)组成。MapFiles的概念类似于Google的SSTable。 在Hbase里面有以下两个主要的概念,Row key 和 Column Family,其次是Cell qualifier和Timestamp tuple,Column family我们通常称之为“列族”,访问控制、磁盘和内存的使用统计都是在列族层面进行的。列族Column family是之前预先定义好的数据模型,每一个Column Family都可以根据“限定符”有多个column。在HBase每个cell存储单元对同一份数据有多个版本,根据唯一的时间戳来区分每个版本之间的差异,最新的数据版本排在最前面 。

口水:Hbase将table水平划分成N个Region,region按column family划分成Store,每个store包括内存中的memstore和持久化到disk上的HFile。

上述可能我表达的还不够到位,下面来看一个实践中的场景,将原来是存放在MySQL中Blog中的数据迁移到HBase中的过程:
MySQL中现有的表结构:
http://ad1v6a.bay.livefilestore.com/y1pu1EtC5sfGer1kGeSiGow1pTz8KnbE49964tRMB-jY5tPHWXC25QHCuXC_c4n9MyC3HXGRkpJD89V8CeQ80xJSfq24A_pE6H4/hbase-1-2.png?psid=1

迁移HBase中的表结构:
http://ad1v6a.bay.livefilestore.com/y1p83hDfj5FiqLhVJcfpBEi_dAB1aOefMgquVQai5K4rQhNk2bpzHM8-eL87zcKKWQm_hn-4Jz5Hb95VHiSWj0PcVCzJW6BlAEb/hbase-1-1.png?psid=1

原来系统中有2张表blogtable和comment表,采用HBase后只有一张blogtable表,如果按照传统的RDBMS的话,blogtable表中的列是固定的,比如schema 定义了Author,Title,URL,text等属性,上线后表字段是不能动态增加的。但是如果采用列存储系统,比如Hbase,那么我们可以定义blogtable表,然后定义info 列族,User的数据可以分为:info:title  ,info:author ,info:url 等,如果后来你又想增加另外的属性,这样很方便只需要 info:xxx 就可以了。
对于Row key你可以理解row key为传统RDBMS中的某一个行的主键,Hbase是不支持条件查询以及Order by等查询,因此Row key的设计就要根据你系统的查询需求来设计了额。 Hbase中的记录是按照rowkey来排序的,这样就使得查询变得非常快。

具体操作过程如下:
============================创建blogtable表=========================
create 'blogtable', 'info','text','comment_title','comment_author','comment_text'
 
============================插入概要信息=========================
put 'blogtable', '1', 'info:title', 'this is doc title'
put 'blogtable', '1', 'info:author', 'javabloger'
put 'blogtable', '1', 'info:url', 'http://www.javabloger.com/index.php'

put 'blogtable', '2', 'info:title', 'this is doc title2'
put 'blogtable', '2', 'info:author', 'H.E.'
put 'blogtable', '2', 'info:url', 'http://www.javabloger.com/index.html'

============================插入正文信息=========================
put 'blogtable', '1', 'text:', 'what is this doc context ?'
put 'blogtable', '2', 'text:', 'what is this doc context2?'

==========================插入评论信息===============================
put 'blogtable', '1', 'comment_title:', 'this is doc comment_title '
put 'blogtable', '1', 'comment_author:', 'javabloger'
put 'blogtable', '1', 'comment_text:', 'this is nice doc'

put 'blogtable', '2', 'comment_title:', 'this is blog comment_title '
put 'blogtable', '2', 'comment_author:', 'H.E.'
put 'blogtable', '2', 'comment_text:', 'this is nice blog'

HBase的数据查询\读取,可以通过单个row key访问,row key的range和全表扫描,大致如下:
注意:HBase不能支持where条件、Order by 查询,只支持按照Row key来查询,但是可以通过HBase提供的API进行条件过滤。
例如:http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/ColumnPrefixFilter.html

scan 'blogtable' ,{COLUMNS => ['text:','info:title'] }  —> 列出 文章的内容和标题

scan 'blogtable' , {COLUMNS => 'info:url' , STARTROW => '2'}    —> 根据范围列出 文章的内容和标题

get 'blogtable','1'    —> 列出 文章id 等于1的数据

get 'blogtable','1', {COLUMN => 'info'}    —> 列出 文章id 等于1 的 info 的头(Head)内容

get 'blogtable','1', {COLUMN => 'text'}   —> 列出 文章id 等于1 的 text  的具体(Body)内容

get 'blogtable','1', {COLUMN => ['text','info:author']}  —> 列出 文章id 等于1 的内容和作者(Body/Author)内容

我的废话2:
   有人会问Java Web服务器中是Tomcat快还是GlassFish快?小型数据库中是MySQL效率高还是MS-SQL效率高?我看是关键用在什么场景和怎么使用这 个产品(技术),所以我渐渐的认为是需要对产品、技术本身深入的了解,而并非一项新的技术就是绝佳的选择。试问:Tomcat的默认的运行参数能和我们线 上正在使用的GlassFish性能相提并论吗?我不相信GlassFishv2和GlassFishv3在默认的配置参数下有显著的差别。我们需要对产 品本身做到深入的了解才能发挥他最高的性能,而并非感观听从厂家的广告和自己的感性认识 迷信哪个产品的优越性。

我的废话3:
  对于NOSQL这样的新技术,的的确确是可以解决过去我们所需要面对的问题,但也并非适合每个应用场景,所以在使用新产品的同时需要切合当前的产品需要, 是需求在引导新技术的投入,而并非为了赶时髦去使用他。你的产品是否过硬不是你使用了什么新技术,用户关心的是速度和稳定性,不会关心你是否使用了 NOSQL。相反Google有着超大的数据量,能给全世界用户带来了惊人的速度和准确性,大家才会回过头来好奇Google到底是怎么做到的。所以根据 自己的需要千万别太勉强自己使用了某项新技术。

我的废话4:
  总之一句话,用什么不是最关键,最关键是怎么去使用!

 
相关文章:
Lily-建立在HBase上的分布式搜索
MySQL向Hive/HBase的迁移工具
HBase入门5(集群) -压力分载与失效转发
Hive入门3–Hive与HBase的整合
HBase入门篇4
HBase入门篇3
HBase入门篇2-Java操作HBase例子
HBase入门篇
基于Hbase存储的分布式消息(IM)系统-JABase

–end–

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

클릭 한 번으로 PPT를 생성해보세요! 키미: 'PPT 이주노동자'가 먼저 대중화되게 해주세요 클릭 한 번으로 PPT를 생성해보세요! 키미: 'PPT 이주노동자'가 먼저 대중화되게 해주세요 Aug 01, 2024 pm 03:28 PM

키미: 단 한 문장이면 단 10초만에 PPT가 완성됩니다. PPT가 너무 짜증나네요! 회의를 하려면 PPT가 있어야 하고, 주간 보고서를 작성하려면 PPT가 있어야 하며, 누군가를 부정행위를 했다고 비난하려면 PPT를 보내야 합니다. 대학은 PPT 전공을 공부하는 것과 비슷합니다. 수업 시간에 PPT를 보고 수업 후에 PPT를 하는 거죠. 아마도 데니스 오스틴이 37년 전 PPT를 발명했을 때, 언젠가 PPT가 이렇게 널리 보급될 것이라고는 예상하지 못했을 것입니다. 우리가 PPT를 만들면서 힘들었던 경험을 이야기하면 눈물이 납니다. "20페이지가 넘는 PPT를 만드는 데 3개월이 걸렸고, 수십 번 수정했어요. PPT를 보면 토할 것 같았어요. 한창 때는 하루에 다섯 장씩 했는데, 숨소리까지 냈어요." PPT였어요." 즉석 회의가 있으면 해야죠.

CVPR 2024 시상식 전체가 발표되었습니다! 약 10,000명이 오프라인으로 컨퍼런스에 참석했으며 Google의 중국인 연구원이 최우수 논문상을 수상했습니다. CVPR 2024 시상식 전체가 발표되었습니다! 약 10,000명이 오프라인으로 컨퍼런스에 참석했으며 Google의 중국인 연구원이 최우수 논문상을 수상했습니다. Jun 20, 2024 pm 05:43 PM

베이징 시간으로 6월 20일 이른 아침, 시애틀에서 열린 최고의 국제 컴퓨터 비전 컨퍼런스인 CVPR2024가 최우수 논문 및 기타 수상작을 공식 발표했습니다. 올해는 우수논문 2편, 최우수 학생논문 2편 등 총 10편의 논문이 수상하였습니다. 컴퓨터 비전(CV) 분야 최고 학회는 매년 수많은 연구기관과 대학이 모여드는 CVPR이다. 통계에 따르면 올해 총 1만1532편의 논문이 제출돼 2719편이 채택돼 합격률 23.6%를 기록했다. Georgia Institute of Technology의 CVPR2024 데이터 통계 분석에 따르면 연구 주제 관점에서 가장 많은 논문이 이미지 및 비디오 합성 및 생성입니다(Imageandvideosyn

PHP에서 MySQL 쿼리 성능을 최적화하는 방법은 무엇입니까? PHP에서 MySQL 쿼리 성능을 최적화하는 방법은 무엇입니까? Jun 03, 2024 pm 08:11 PM

선형 복잡성에서 로그 복잡성까지 조회 시간을 줄이는 인덱스를 구축하여 MySQL 쿼리 성능을 최적화할 수 있습니다. SQL 삽입을 방지하고 쿼리 성능을 향상하려면 PREPAREDStatements를 사용하세요. 쿼리 결과를 제한하고 서버에서 처리되는 데이터의 양을 줄입니다. 적절한 조인 유형 사용, 인덱스 생성, 하위 쿼리 사용 고려 등 조인 쿼리를 최적화합니다. 쿼리를 분석하여 병목 현상을 식별하고, 캐싱을 사용하여 데이터베이스 로드를 줄이고, 오버헤드를 최소화합니다.

PHP에서 MySQL 백업 및 복원을 사용하는 방법은 무엇입니까? PHP에서 MySQL 백업 및 복원을 사용하는 방법은 무엇입니까? Jun 03, 2024 pm 12:19 PM

PHP에서 MySQL 데이터베이스를 백업하고 복원하는 작업은 다음 단계에 따라 수행할 수 있습니다. 데이터베이스 백업: mysqldump 명령을 사용하여 데이터베이스를 SQL 파일로 덤프합니다. 데이터베이스 복원: mysql 명령을 사용하여 SQL 파일에서 데이터베이스를 복원합니다.

베어메탈부터 700억 개의 매개변수가 있는 대형 모델까지 튜토리얼과 바로 사용할 수 있는 스크립트가 있습니다. 베어메탈부터 700억 개의 매개변수가 있는 대형 모델까지 튜토리얼과 바로 사용할 수 있는 스크립트가 있습니다. Jul 24, 2024 pm 08:13 PM

우리는 LLM이 대규모 데이터를 사용하여 대규모 컴퓨터 클러스터에서 훈련된다는 것을 알고 있습니다. 이 사이트는 LLM 훈련 프로세스를 지원하고 개선하는 데 사용되는 다양한 방법과 기술을 소개합니다. 오늘 우리가 공유하고 싶은 것은 기본 기술에 대해 심층적으로 살펴보고 운영 체제 없이도 수많은 "베어 메탈"을 LLM 교육을 위한 컴퓨터 클러스터로 전환하는 방법을 소개하는 기사입니다. 이 기사는 기계가 생각하는 방식을 이해하여 일반 지능을 달성하기 위해 노력하는 AI 스타트업 Imbue에서 가져온 것입니다. 물론 운영 체제가 없는 "베어 메탈"을 LLM 교육을 위한 컴퓨터 클러스터로 전환하는 것은 탐색과 시행착오로 가득 찬 쉬운 과정이 아니지만 Imbue는 마침내 700억 개의 매개변수를 사용하여 LLM을 성공적으로 교육했습니다. 과정이 쌓이다

RAG의 12가지 문제점을 카운트다운하는 NVIDIA 수석 아키텍트가 솔루션을 가르칩니다. RAG의 12가지 문제점을 카운트다운하는 NVIDIA 수석 아키텍트가 솔루션을 가르칩니다. Jul 11, 2024 pm 01:53 PM

검색 증강 생성(RAG)은 검색을 사용하여 언어 모델을 향상시키는 기술입니다. 특히, 언어 모델은 답변을 생성하기 전에 광범위한 문서 데이터베이스에서 관련 정보를 검색한 다음 이 정보를 사용하여 생성 프로세스를 안내합니다. 이 기술은 콘텐츠의 정확성과 관련성을 크게 향상시키고 환각 문제를 효과적으로 완화하며 지식 업데이트 속도를 높이고 콘텐츠 생성 추적성을 향상시킬 수 있습니다. RAG는 ​​의심할 여지 없이 인공 지능 연구에서 가장 흥미로운 분야 중 하나입니다. RAG에 대한 자세한 내용은 본 사이트의 칼럼 기사 "대형 모델의 단점을 보완하는 데 특화된 RAG의 새로운 발전은 무엇인가?"를 참조하시기 바랍니다. 이 리뷰는 이를 명확하게 설명합니다." 그러나 RAG는 완벽하지 않으며 사용자는 이를 사용할 때 몇 가지 "고통"에 직면하는 경우가 많습니다. 최근 NVIDIA의 고급 생성 AI 솔루션

AI 활용 | AI가 혼자 사는 소녀의 생활 브이로그를 만들어 3일 만에 수만 개의 좋아요를 받았습니다. AI 활용 | AI가 혼자 사는 소녀의 생활 브이로그를 만들어 3일 만에 수만 개의 좋아요를 받았습니다. Aug 07, 2024 pm 10:53 PM

Machine Power Report 편집자: Yang Wen 대형 모델과 AIGC로 대표되는 인공지능의 물결은 우리가 살고 일하는 방식을 조용히 변화시키고 있지만 대부분의 사람들은 여전히 ​​그것을 어떻게 사용하는지 모릅니다. 이에 직관적이고 흥미롭고 간결한 인공지능 활용 사례를 통해 AI 활용 방법을 자세히 소개하고 모두의 사고를 자극하고자 'AI in Use' 칼럼을 론칭하게 됐다. 또한 독자들이 혁신적인 실제 사용 사례를 제출하는 것을 환영합니다. 영상 링크 : https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ 최근 샤오홍슈에서는 혼자 사는 소녀의 인생 브이로그가 인기를 끌었습니다. 몇 가지 치유의 말과 함께 일러스트레이션 스타일의 애니메이션을 단 며칠 만에 쉽게 익힐 수 있습니다.

PHP를 사용하여 MySQL 테이블에 데이터를 삽입하는 방법은 무엇입니까? PHP를 사용하여 MySQL 테이블에 데이터를 삽입하는 방법은 무엇입니까? Jun 02, 2024 pm 02:26 PM

MySQL 테이블에 데이터를 삽입하는 방법은 무엇입니까? 데이터베이스에 연결: mysqli를 사용하여 데이터베이스에 대한 연결을 설정합니다. SQL 쿼리 준비: 삽입할 열과 값을 지정하는 INSERT 문을 작성합니다. 쿼리 실행: query() 메서드를 사용하여 삽입 쿼리를 실행하면 확인 메시지가 출력됩니다.

See all articles