3D Repo Runs MongoDB
If youre an architectural or engineering firm, youve undoubtedly confronted the difficulty of managing and collaborating on 3D assets like CAD drawings. ?The act of sharing massive files is hard but feasible, but it is significantly compli
If you’re an architectural or engineering firm, you’ve undoubtedly confronted the difficulty of managing and collaborating on 3D assets like CAD drawings. ?The act of sharing massive files is hard but feasible, but it is significantly complicated by the inability to determine that you’re using the latest version. ?For the CAD-inclined, there’s hope.?Jozef Dobos, a doctoral student at University College London (UCL), has applied the geospatial indexing capabilities of MongoDB a version control system for 3D assets called?3D Repo.??Sponsored by?Arup Foresight, the built environment innovation division of Arup Group Limited, a global design and business consulting firm with offices in over 30 countries, 3D Repo leverages the flexibility of MongoDB’s data model, not to mention its geospatial capabilities, to make collaboration on 3D assets easy.
The Problem
Whether an architectural firm or a product design company, collaboration on large (500GB+) 3D assets is a critical but difficult task, one not solved simply by sending links around to these assets. The maintenance of assets in a large 3D visualisation can involve authors that are numerous, geographically dispersed, and diverse in their skillsets and tools.
This presents problems including, but not limited to, maintaining consistency of the models and dealing with concurrent edits in the same part of a 3D scene. For example, in the industry today, each user loads a particular 3D scene into a modeling tool, modifies it, and then re-saves the entire file again, making any version tracking and sharing unnecessarily unclear. By the time a simulation is completed, the design might progress so rapidly that the results are often inapplicable.?
An SVN for 3D Assets
Looking for a better way to collaborate on 3D files, Dobos developed a unified and integrated framework, called?3D Repo,?that supports collaborative editing and distribution of 3D assets. ?Think of it like Subversion (SVN), but for 3D assets, not code. ?
The 3D Repo framework tracks multiple revisions of 3D assets so that they can be integrated later on. It thus provides similar functionality to file-based revision control systems like SVN, but is built around MongoDB, thereby avoiding the constraints of a file-based system. The framework also supports distributed editing over the Internet and additional lightweight clients in web-browsers and mobile devices. Such an approach is expected to improve the engineering as well as public engagement and considerably reduce the costs of future industrial development.
Why MongoDB?
While there are other proprietary and open-source databases that support spatial data directly - e.g. Oracle Spatial and PostGIS for PostgreSQL - these alternatives focus on 2D geometry, not 3D models and their properties. They also do not support the type of revision histories that is commonly required in 3D asset management.
MongoDB, on the other hand, avoids rigid data models and is optimized for large read-write operations. It is therefore possible to store 3D models in a database and, due to MongoDB’s schema flexibility, also track other associated data such as semantic relationships and even individual revisions, as is the case in 3D Repo.?
As Dobos explains:
Basically, relational databases can in no way cut it. Rigid table structures are not suitable for highly diverse and large 3D data. In our case, a single 3D model or, better said, a “3D scene” is represented as a scene graph, where each node can be, and most of the time is, something different. It can be a node for a mesh, hence a large binary array, or a transformation, where transformation matrix is simply 16 numbers, or animation, bone, material, texture etc. Each of these is represented and stored differently. So key-value pairs are a match made in heaven for this type of data.
In MongoDB, 3D Repo assigns two collections (tables) per 3D scene, one for all the scene graph constituents and one for all the documents that belong to a revision history. Hence, each of these collections stores a directed acyclic graph, making the access implementation reusable. Once the data is in a database, access is implicitly supported in a distributed manner via a dedicated query language.?
In order to offer a scalable visualization platform, 3D Repo streams decomposed scene graph components from MongoDB onto client devices, reconstructs their 3D representation and displays them for viewing.
This explains why MongoDB is superior to an RDBMS like Oracle for this kind of application, but it doesn’t address the possibility that Dobos could have turned to another NoSQL database, and particularly a graph database, given that a scene graph is a directed acyclic graph. ?Surely this should be a fit for a graph database?
Not really, as Dobos articulates:?
Mostly simply stated, we don’t need any complicated graph traversal operations. We opted for MongoDB because of its efficiency with binary storage, BSON rather than ASCII (hence a clear winner over CouchDB, too), and due to its flexibility, not to mention its web-ready approach. MongoDB is proven to scale well, has sharding built-in and there is a thriving community to support it. Most of the design inspiration in our system actually comes from webinars by Wordnik and their experience. ?We are really grateful for those!
In sum, MongoDB delivers the flexibility and 3D geospatial capabilities necessary to making 3D Repo a reality.
Results
The 3D Repo approach offers significant benefits over alternative techniques like geographic information systems (GIS), given the direct MongoDB database connection, the scalability of MongoDB, and its built-in support for geospatial indexing. In addition, MongoDB enables version control for 3D assets in a way impossible to proprietary or open-source RDBMS. ?Geographic information systems such as Oracle Spatial or PostGIS may be acceptable for 2D assets such as lines, but they cannot match MongoDB for representing 3D data efficiently and carrying metadata on top.?Importantly, 3D Repo’s MongoDB-based solution can be extended to support various data types including building information modelling (BIM) or other representations.?
For more information on the research Dobos is doing on 3D Repo, please see “Revision Control Framework for 3D Assets” (PDF) or review his?related research.?
Note: MongoDB does not currently support 3D geospatial indexing.?
原文地址:3D Repo Runs MongoDB, 感谢原作者分享。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

전자 상거래 웹 사이트를 개발할 때 어려운 문제가 발생했습니다. 사용자에게 개인화 된 제품 권장 사항을 제공하는 방법. 처음에는 간단한 권장 알고리즘을 시도했지만 결과는 이상적이지 않았으며 사용자 만족도에도 영향을 미쳤습니다. 추천 시스템의 정확성과 효율성을 향상시키기 위해보다 전문적인 솔루션을 채택하기로 결정했습니다. 마지막으로 Composer를 통해 Andres-Montanez/Residations-Bundle을 설치하여 문제를 해결했을뿐만 아니라 추천 시스템의 성능을 크게 향상 시켰습니다. 다음 주소를 통해 작곡가를 배울 수 있습니다.

이 기사는 데비안 시스템에서 MongoDB를 구성하여 자동 확장을 달성하는 방법을 소개합니다. 주요 단계에는 MongoDB 복제 세트 및 디스크 공간 모니터링 설정이 포함됩니다. 1. MongoDB 설치 먼저 MongoDB가 데비안 시스템에 설치되어 있는지 확인하십시오. 다음 명령을 사용하여 설치하십시오. sudoaptupdatesudoaptinstall-imongb-org 2. MongoDB Replica 세트 MongoDB Replica 세트 구성은 자동 용량 확장을 달성하기위한 기초 인 고 가용성 및 데이터 중복성을 보장합니다. MongoDB 서비스 시작 : sudosystemctlstartMongodsudosys

이 기사는 데비안 시스템에서 고도로 사용 가능한 MongoDB 데이터베이스를 구축하는 방법에 대해 설명합니다. 우리는 데이터 보안 및 서비스가 계속 운영되도록하는 여러 가지 방법을 모색 할 것입니다. 주요 전략 : ReplicaSet : ReplicaSet : 복제품을 사용하여 데이터 중복성 및 자동 장애 조치를 달성합니다. 마스터 노드가 실패하면 복제 세트는 서비스의 지속적인 가용성을 보장하기 위해 새 마스터 노드를 자동으로 선택합니다. 데이터 백업 및 복구 : MongoDump 명령을 정기적으로 사용하여 데이터베이스를 백업하고 데이터 손실의 위험을 처리하기 위해 효과적인 복구 전략을 공식화합니다. 모니터링 및 경보 : 모니터링 도구 (예 : Prometheus, Grafana) 배포 MongoDB의 실행 상태를 실시간으로 모니터링하고

해시 값으로 저장되기 때문에 MongoDB 비밀번호를 Navicat을 통해 직접 보는 것은 불가능합니다. 분실 된 비밀번호 검색 방법 : 1. 비밀번호 재설정; 2. 구성 파일 확인 (해시 값이 포함될 수 있음); 3. 코드를 점검하십시오 (암호 하드 코드 메일).

CentOS 시스템 하에서 MongoDB 효율적인 백업 전략에 대한 자세한 설명이 기사는 CentOS 시스템에서 MongoDB 백업을 구현하기위한 다양한 전략을 자세히 소개하여 데이터 보안 및 비즈니스 연속성을 보장 할 것입니다. Docker 컨테이너 환경에서 수동 백업, 시간이 정해진 백업, 자동 스크립트 백업 및 백업 메소드를 다루고 백업 파일 관리를위한 모범 사례를 제공합니다. 수동 백업 : MongoDump 명령을 사용하여 Manual 전체 백업을 수행하십시오 (예 : Mongodump-HlocalHost : 27017-U username-P password-d 데이터베이스 이름 -o/백업 디렉토리이 명령은 지정된 데이터베이스의 데이터 및 메타 데이터를 지정된 백업 디렉토리로 내보내게됩니다.

데비안 시스템에서 MongoDB 데이터베이스를 암호화하려면 다음 단계에 따라 필요합니다. 1 단계 : 먼저 MongoDB 설치 먼저 Debian 시스템이 MongoDB가 설치되어 있는지 확인하십시오. 그렇지 않은 경우 설치를위한 공식 MongoDB 문서를 참조하십시오 : https://docs.mongodb.com/manual/tutorial/install-mongodb-ondodb-on-debian/step 2 : 암호화 키 파일 생성 암호화 키를 포함하는 파일을 만듭니다.

CentOS 시스템의 GitLab 데이터베이스 배포 안내서 올바른 데이터베이스를 선택하는 것은 GitLab을 성공적으로 배포하는 데 중요한 단계입니다. Gitlab은 MySQL, PostgreSQL 및 MongoDB를 포함한 다양한 데이터베이스와 호환됩니다. 이 기사는 이러한 데이터베이스를 선택하고 구성하는 방법을 자세히 설명합니다. 데이터베이스 선택 권장 사항 MySQL : 널리 사용되는 RDBMS (Relational Database Management System). PostgreSQL : 강력한 오픈 소스 RDBM은 복잡한 쿼리 및 고급 기능을 지원하며 대형 데이터 세트를 처리하는 데 적합합니다. MongoDB : 인기있는 NOSQL 데이터베이스, 바다 취급에 능숙합니다

MongoDB 사용자를 설정하려면 다음 단계를 따르십시오. 1. 서버에 연결하고 관리자 사용자를 만듭니다. 2. 사용자에게 액세스 권한을 부여 할 데이터베이스를 작성하십시오. 3. CreateUser 명령을 사용하여 사용자를 생성하고 자신의 역할 및 데이터베이스 액세스 권한을 지정하십시오. 4. GetUsers 명령을 사용하여 생성 된 사용자를 확인하십시오. 5. 선택적으로 다른 컬렉션에 대한 다른 권한을 설정하거나 사용자 권한을 부여합니다.
